期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
基于改进DeepLabV3+网络的荔枝种植面积提取方法
1
作者 刘振国 孙永旺 +2 位作者 张喜珍 刘宜浩 鲍荣中 《农业工程学报》 北大核心 2025年第12期191-197,共7页
现有的荔枝种植面积遥感提取方法存在提取精度不高、分割效果欠佳、训练时间长以及模型复杂度高等问题。为此该研究提出了改进的DeepLabV3+模型,将主干网络Xception替换为MobileNetV2,保证精度的同时节约时间;构建DenseASPP模块增强多... 现有的荔枝种植面积遥感提取方法存在提取精度不高、分割效果欠佳、训练时间长以及模型复杂度高等问题。为此该研究提出了改进的DeepLabV3+模型,将主干网络Xception替换为MobileNetV2,保证精度的同时节约时间;构建DenseASPP模块增强多尺度特征提取;引入通道注意力机制和条带池化,抑制干扰,提高精度。并与SegFormer、PSPNet和UNet图像分割模型进行对比。结果表明,改进模型的平均交并比(mean intersection over union,MIoU)、平均像素精度(mean pixel accuracy,mPA)和准确率(accuracy,Ac)分别为83.55%、91.58%、91.15%,相比于原始的DeepLabV3+模型分别提高了8.15、5.27、4.97个百分点,而与其他模型对比,该模型通过结构优化将参数量压缩至5.8 M,计算复杂度降为22.4 GFLOPs,较原始的DeepLabV3+降低94%,较PSPNet减少95%。研究结果为准确了解和掌握种植区的空间分布及变迁趋势提供参考。 展开更多
关键词 深度学习 荔枝 语义分割 种植面积提取 DeepLabV3+模型 MobileNetV2
在线阅读 下载PDF
基于Sentinel 1/2和GEE的水稻种植面积提取方法——以杭嘉湖平原为例
2
作者 鄂海林 周德成 李坤 《智慧农业(中英文)》 2025年第2期81-94,共14页
[目的/意义]水稻是中国的主要作物之一,准确提取水稻面积对保障粮食安全、温室气体排放管理、水资源调配及生态保护至关重要。光学与微波遥感数据融合是水稻监测主要发展趋势,但现有研究大多依赖传统的物候学特征(如移栽期),忽视了植被... [目的/意义]水稻是中国的主要作物之一,准确提取水稻面积对保障粮食安全、温室气体排放管理、水资源调配及生态保护至关重要。光学与微波遥感数据融合是水稻监测主要发展趋势,但现有研究大多依赖传统的物候学特征(如移栽期),忽视了植被和水体指数在水稻生长全过程中的整体动态变化特征。为了快速、准确地获取水稻种植分布、面积等信息,以中国典型水稻种植区—杭嘉湖平原为例,研发了一种基于Sentinel-1/2数据和Google Earth Engine(GEE)云计算平台的水稻种植面积提取方法,即NDVI-SDWI动态融合水稻识别方法(Dynamic NDVI-SDWI Fusion Method for Rice Mapping,DNSF-Rice)。[方法]首先,通过Sentinel-2归一化植被指数(Normalized Difference Vegetation Index,NDVI)时间序列,基于阈值分割获取水稻种植潜在分布范围;其次,通过Sentinel-1双极化水体指数(Sentinel-1 Dual-Polarized Water Index,SDWI)时间序列,分析其在水稻生长周期内的动态变化特征,构建阈值分割算法获取基于微波数据的水稻种植分布;最后,将上述结果的交集作为最终水稻分布范围,构建了杭嘉湖平原2019—2023年10 m空间分辨率的水稻种植分布图。此外,利用地面实测数据和统计数据对提取结果进行了精度验证,并与其他产品进行了对比分析。[结果与讨论]本研究所提取的水稻种植分布图总体精度均达96%以上,F_(1)得分超过0.96,水稻种植面积整体呈逐年增长的趋势,提取面积与统计数据具有高度的一致性,优于其他相关产品。[结论]DNSF-Rice水稻识别方法基于GEE云平台,结合了光学和合成孔径雷达(Synthetic Aperture Radar,SAR)时间序列数据的优势,利用了NDVI和SDWI在水稻生长全过程中的整体动态变化特征,为高效、精确监测水稻种植面积提供了新的思路。 展开更多
关键词 遥感 GEE 种植面积提取 Sentinel-1 合成孔径雷达 归一化植被指数
在线阅读 下载PDF
融合GF-6 WFV影像主成分分析特征的县域冬小麦种植面积提取 被引量:2
3
作者 张萌 徐建鹏 +3 位作者 周鹿扬 王杰 王状 岳伟 《湖北农业科学》 2024年第8期201-208,共8页
为准确、快速获得县域冬小麦的种植信息,针对多时相方法存在的成本高、效率低、过程复杂等问题,以安徽省固镇县为研究区,提出基于单时相GF-6 WFV影像主成分分析特征与原始光谱波段归一化融合、并使用K-最近邻算法进行土地覆盖物分类的... 为准确、快速获得县域冬小麦的种植信息,针对多时相方法存在的成本高、效率低、过程复杂等问题,以安徽省固镇县为研究区,提出基于单时相GF-6 WFV影像主成分分析特征与原始光谱波段归一化融合、并使用K-最近邻算法进行土地覆盖物分类的有效面积提取方法。结果表明,所提出方法优于RAW和PDR这2种基准方法,且降维维度参数为3时效果最好,总体精度和Kappa系数分别为89.71%和0.87,实际冬小麦提取面积精度达98.49%,相对误差仅为1.51%。 展开更多
关键词 遥感 冬小麦 种植面积提取 主成分分析特征 GF-6 WFV影像 固镇县
在线阅读 下载PDF
基于多时相IRS-P6卫星AWiFS影像的水稻种植面积提取方法 被引量:26
4
作者 韩立建 潘耀忠 +4 位作者 贾斌 朱秀芳 刘旭拢 王双 张锦水 《农业工程学报》 EI CAS CSCD 北大核心 2007年第5期137-143,F0002,共8页
水稻是中国的第一大粮食作物,准确的获得水稻种植面积具有重要的现实意义。IRS-P 6卫星数据产品是近年来中等分辨率数据中有广泛应用前景的数据源之一,但是它在农作物种植面积提取方面的应用还有待进一步验证。选取中国典型水稻种植区... 水稻是中国的第一大粮食作物,准确的获得水稻种植面积具有重要的现实意义。IRS-P 6卫星数据产品是近年来中等分辨率数据中有广泛应用前景的数据源之一,但是它在农作物种植面积提取方面的应用还有待进一步验证。选取中国典型水稻种植区安徽省怀远县作为试验区,利用2005年6月24日和9月9日的两个水稻典型物候期的IRS-P 6卫星AW iFS数据对水稻种植面积识别进行了试验研究,根据两期水稻提取结果进行分区提取得到了较为准确的水稻种植面积。经过与IRS-P 6高分辨率L ISS-3识别结果进行对比分析,测量结果总体像元精度为88.58%,区域总量一致性为97.63%,略低于高分辨率识别结果。通过试验研究得到以下初步结论:1)利用多时相的IRS-P 6卫星AW iFS数据分别分类后结果,进行分区提取的方法可以较精确的提取水稻的种植面积;2)水稻种植面积同样可以利用乳熟期的IRS-P 6卫星AW iFS单期影像较准确的获得;3)IRS-P 6卫星影像数据在农作物种植面积提取应用中有巨大的应用潜力。 展开更多
关键词 水稻 种植面积提取 IRS—P6 遥感监测
在线阅读 下载PDF
基于决策树和混合像元分解的玉米种植面积提取方法 被引量:27
5
作者 苏伟 姜方方 +3 位作者 朱德海 展郡鸽 马鸿元 张晓东 《农业机械学报》 EI CAS CSCD 北大核心 2015年第9期289-295,301,共8页
Landsat 8影像具有较高空间分辨率和时间分辨率,长时间序列Landsat 8-NDVI曲线反映农作物的物候历、种植模式和种植结构信息,是精确提取玉米种植面积的理想数据源。基于时序Landsat 8-NDVI影像提取玉米种植面积的方法中,决策树方法快速... Landsat 8影像具有较高空间分辨率和时间分辨率,长时间序列Landsat 8-NDVI曲线反映农作物的物候历、种植模式和种植结构信息,是精确提取玉米种植面积的理想数据源。基于时序Landsat 8-NDVI影像提取玉米种植面积的方法中,决策树方法快速、高效,可通过多阈值限定进行分类,但由于混合像元问题,如果阈值设置过宽,提取面积偏大;阈值设置过窄,提取面积偏小;混合像元分解通过计算端元组分丰度可以排除异质地类干扰。因此,以时序NDVI为数据源、耦合使用2种算法是精确提取作物种植面积的有效方法。本研究基于时序Landsat 8-NDVI,提取河北省保定市大田玉米的种植面积。首先,分析典型作物区的NDVI曲线特征,并构建决策树从而初步提取早播夏玉米、小麦夏玉米和春玉米的分布范围。然后,根据端元平均NDVI波谱曲线,进行3种玉米混合度分解,进而根据玉米丰度比例精确提取玉米种植面积。精度评价结果表明:利用本方法提取的玉米种植区总分类精度在98%以上,Kappa系数在0.97以上;所提取的玉米种植类型主要是夏玉米,春玉米种植主要集中在涿州市中部,这与实地调查结果一致。上述定量和定性的评价结果表明该方法可用于快速、精确提取玉米种植面积。 展开更多
关键词 玉米 种植面积提取 决策树 混合像元分解 归一化差分植被指数
在线阅读 下载PDF
基于Radarsat-2的水稻种植面积提取 被引量:8
6
作者 单捷 邱琳 +1 位作者 孙玲 王志明 《江苏农业学报》 CSCD 北大核心 2017年第3期561-567,共7页
选用2013年7月23日-10月27日期间5期分辨率为5.2 m×7.6 m的Radarsat-2影像为数据,采用支持向量机法(SVM)和最大似然法(MLC)分别对各时相水稻种植面积进行提取,并以地面实测GPS水稻样方进行精度验证。结果表明SVM和MLC方法的水稻面... 选用2013年7月23日-10月27日期间5期分辨率为5.2 m×7.6 m的Radarsat-2影像为数据,采用支持向量机法(SVM)和最大似然法(MLC)分别对各时相水稻种植面积进行提取,并以地面实测GPS水稻样方进行精度验证。结果表明SVM和MLC方法的水稻面积提取精度均在9月9日达到最高,所以选择在9月9日的水稻面积提取结果上研究耕地地块优化和碎小图斑去除对精度的影响。通过耕地地块优化和碎小图斑去除处理,水稻面积提取精度显著提高,SVM法由原先的72.876%提高到95.482%,MLC法由74.224%提高到91.792%。 展开更多
关键词 遥感 支持向量机 最大似然法 水稻种植面积提取
在线阅读 下载PDF
基于时空数据融合的县域水稻种植面积提取 被引量:13
7
作者 牛海鹏 王占奇 肖东洋 《农业机械学报》 EI CAS CSCD 北大核心 2020年第4期156-163,共8页
受云雨天气和卫星自身回访周期的影响,县域尺度水稻种植面积的提取往往难以获取完整时间序列的高空间分辨率影像,利用单一MODIS数据导致提取精度不高。针对上述问题以河南省优良水稻种植区原阳县为例,采用增强型自适应反射率时空融合模... 受云雨天气和卫星自身回访周期的影响,县域尺度水稻种植面积的提取往往难以获取完整时间序列的高空间分辨率影像,利用单一MODIS数据导致提取精度不高。针对上述问题以河南省优良水稻种植区原阳县为例,采用增强型自适应反射率时空融合模型(Enhanced spatial and temporal adaptive reflectance fusion model,ESTARFM),融合中高分辨率的Landsat数据和高时间分辨率的MODIS数据,获取完整时间序列的归一化植被指数(Normalized difference vegetation index,NDVI)数据,经过TIMESAT滤波平滑处理后,利用研究区内水稻与其他地物的时序NDVI曲线,设置合理的NDVI阈值,采用决策树分类的方法提取水稻种植面积。结果显示,总体分类精度为92.23%,Kappa系数为0.9043。提取的水稻制图精度为96.73%,用户精度为93.51%,说明ESTARFM模型能很好地融合出高空间分辨率影像,解决数据缺失问题,可为县域尺度水稻种植面积提取提供参考。 展开更多
关键词 水稻 种植面积提取 县域尺度 增强型自适应反射率时空融合模型 数据融合
在线阅读 下载PDF
基于光谱特征分异的玉米种植面积提取 被引量:10
8
作者 王尔美 李卫国 +2 位作者 顾晓鹤 张云华 陈华 《江苏农业学报》 CSCD 北大核心 2017年第4期822-827,共6页
玉米种植面积的准确获取是进行玉米长势监测和产量估测的前提与基础。在对Landsat-8/OLI影像进行辐射定标、大气校正、几何精校正和裁剪等预处理的基础上,基于典型地物光谱空间差异与物候特征的异同,选取具有代表性的4种植被指数[归一... 玉米种植面积的准确获取是进行玉米长势监测和产量估测的前提与基础。在对Landsat-8/OLI影像进行辐射定标、大气校正、几何精校正和裁剪等预处理的基础上,基于典型地物光谱空间差异与物候特征的异同,选取具有代表性的4种植被指数[归一化差值植被指数(NDVI)、差值植被指数(DVI)、比值植被指数(RVI)、绿度植被指数(GVI)]和近红外波段反射率,通过构建植被光谱特征指标阈值对不同地物进行识别和分类,最后获取玉米种植面积。结果表明,利用近红外波段反射率可以将农作物与其他地物区分开来,即当其反射率值大于0.37时,地物为农作物。对不同种类农作物识别时,选择NDVI>0.86、DVI>0.53、RVI>13.00、GVI>3 713.60作为分类阈值,可以将玉米与水稻和大豆区分,准确提取到玉米的种植面积。利用样本数据和当地农业部门提供的数据进行面积提取精度验证,总体精度为92.75%,说明基于多光谱特征指标建立分类阈值的方法可以准确提取玉米种植面积,该方法可以为江淮玉米种植区县域玉米种植面积的提取提供参考。 展开更多
关键词 玉米 光谱特征 植被指数 种植面积提取
在线阅读 下载PDF
多种光谱指标构建决策树的水稻种植面积提取 被引量:15
9
作者 张晓忆 李卫国 +2 位作者 景元书 葛广秀 王庆林 《江苏农业学报》 CSCD 北大核心 2016年第5期1066-1072,共7页
合理选取不同光谱指标制定决策树规则,能有效提高决策树分类法提取水稻面积的精度。本研究以江苏省淮安市为例,选取30 m空间分辨率HJ1A和16 m空间分辨率GF1多光谱影像,在对不同地物样点像元光谱特征分析的基础上,选择地物光谱特征明显... 合理选取不同光谱指标制定决策树规则,能有效提高决策树分类法提取水稻面积的精度。本研究以江苏省淮安市为例,选取30 m空间分辨率HJ1A和16 m空间分辨率GF1多光谱影像,在对不同地物样点像元光谱特征分析的基础上,选择地物光谱特征明显的GF影像计算NDVI、EVI、DVI和RVI,并提取影像近红外波段反射率,利用上述5种光谱指标确定不同地物分类阈值来对两景影像进行决策树分类,进而获取淮安市水稻面积和分布情况。结果表明,GF影像地物光谱特征较明显,有利于识别不同地物,可用来确定基于多种光谱指标分类的阈值范围。其中,水稻判别条件为NDVI>0.70,0.25<DVI≤0.45,0.53<EVI≤0.80,RVI>5.5且0.30<ρNIR≤0.46。HJ影像和GF影像提取水稻面积的样本精度分别为87.29%和93.70%,GF影像比HJ影像的水稻面积提取精度提高了6.41个百分点,说明利用多种光谱指标构建决策树分类模型是一种有效提取水稻种植面积的方法。 展开更多
关键词 水稻 多光谱遥感 决策树分类 种植面积提取
在线阅读 下载PDF
基于NDVI密度分割的冬小麦种植面积提取 被引量:24
10
作者 葛广秀 李卫国 景元书 《麦类作物学报》 CAS CSCD 北大核心 2014年第7期997-1002,共6页
为解决作物面积遥感监测中常遇的混合像元问题,选用江苏省沭阳县冬小麦扬花期HJ-1A卫星遥感影像,基于不同地物光谱信息的差异性与可分割性,提出基于归一化植被指数(NDVI)密度分割的冬小麦种植面积提取方法。在利用GPS实地取样调查和建... 为解决作物面积遥感监测中常遇的混合像元问题,选用江苏省沭阳县冬小麦扬花期HJ-1A卫星遥感影像,基于不同地物光谱信息的差异性与可分割性,提出基于归一化植被指数(NDVI)密度分割的冬小麦种植面积提取方法。在利用GPS实地取样调查和建立解译标志的基础上,对HJ-1A卫星影像进行了几何与大气校正。利用NDVI灰度影像提取混合像元训练样本的NDVI值和小麦种植面积,计算小麦面积权重,确定混合像元的NDVI阈值。利用NDVI再归一化结果对NDVI灰度影像进行密度分割,依据不同密度分割系数下像元总面积及其所对应的小麦面积权重关系,最终得到沭阳县冬小麦种植面积。结果表明,根据NDVI密度分割法提取冬小麦面积为8.37×104 hm2,面积精度为92.37%,样本精度为93.31%。基于密度分割系数(P>0.5)制作沭阳县冬小麦种植分布图,获取了全县冬小麦空间分布特征信息。以上结果说明NDVI密度分割法能较准确地提取研究区内冬小麦种植面积,可有效解决农作物种植面积提取中混合像元问题。 展开更多
关键词 NDVI密度分割 冬小麦 面积权重 种植面积提取
在线阅读 下载PDF
基于改进CBAM-DeepLab V3+的苹果种植面积提取 被引量:6
11
作者 常晗 郭树欣 +1 位作者 张海洋 张瑶 《农业机械学报》 EI CAS CSCD 北大核心 2023年第S02期206-213,共8页
为提高苹果种植区域的提取精度,提出了一种基于Sentinel-2和MODIS融合影像的CBAM-DeepLab V3+模型。影响苹果种植区域提取精度的主要因素包括遥感影像的质量以及语义分割模型的性能。从影像质量角度来看,采用基于时序的时空融合算法ESTA... 为提高苹果种植区域的提取精度,提出了一种基于Sentinel-2和MODIS融合影像的CBAM-DeepLab V3+模型。影响苹果种植区域提取精度的主要因素包括遥感影像的质量以及语义分割模型的性能。从影像质量角度来看,采用基于时序的时空融合算法ESTARFM,通过融合Sentinel-2和MODIS的遥感影像数据,实现更高空间分辨率和时间分辨率数据的获取。与此同时,将训练样本从原始的800幅扩充至2400幅,为后续语义分割模型提供更为充足的样本容量。在语义分割模型优化方面,为了进一步提高苹果种植面积的提取精度,以DeepLab V3+网络结构模型为基础,引入基于通道和空间的CBAM注意力机制,进而发展出CBAM-DeepLab V3+模型。与原始DeepLab V3+模型相比,加入CBAM注意力机制的CBAM-DeepLab V3+模型在拟合速度较慢、边缘目标分割不精确、大尺度目标分割内部不一致和存在孔洞等缺陷方面实现了突破,这些改进提高了模型的训练与预测性能。本研究采用原始Sentinel-2影像及时空融合后的影像数据集,结合烟台市牟平区王格庄镇的数据集和观水镇苹果数据集对U-Net、FCN以及DeepLab V3+模型和CBAM-DeepLab V3+模型进行对比,研究发现在苹果种植面积提取方面,CBAM-DeepLab V3+优化模型所取得的MIoU为84.6%,苹果种植面积提取准确率达90.4%。U-Net、FCN和DeepLab V3+模型的MIoU分别为79.2%、75%、81.2%。此外,该模型预测的烟台市牟平区王格庄镇苹果种植面积为3433.33 hm^(2),与烟台市国民经济和社会发展统计公报公布的3666.66 hm^(2)相比,误差为233.33 hm^(2),预测准确率高达93.64%。 展开更多
关键词 苹果种植面积提取 时空融合 卷积神经网络 DeepLab V3+ 语义分割
在线阅读 下载PDF
基于深度学习和遥感数据的水稻种植面积提取 被引量:2
12
作者 邱儒琼 彭少坤 李孟璠 《湖北农业科学》 2023年第11期176-182,190,共8页
针对现有基于深度卷积神经网络进行水稻(Oryza sativa L.)遥感识别中样本采集工作量大、样本标注要求高及水稻感受野尺度选择难等问题,构建了一种基于像元和多尺度的深度卷积神经网络(DCNN)水稻遥感识别模型。首先,针对水稻种植分布特点... 针对现有基于深度卷积神经网络进行水稻(Oryza sativa L.)遥感识别中样本采集工作量大、样本标注要求高及水稻感受野尺度选择难等问题,构建了一种基于像元和多尺度的深度卷积神经网络(DCNN)水稻遥感识别模型。首先,针对水稻种植分布特点,综合深度卷积神经网络方法的特点,设计了基于像元的DCNN提取模型;其次,将多尺度与DCNN相结合,构建多尺度DCNN模型,增加感受野的多尺度特性;最后,为了验证多尺度DCNN模型提取水稻的效果,以高分一号和高分二号卫星影像为数据源,选取传统机器学习SVM模型、语义分割D-Linknet模型、单一尺度DCNN模型进行分类精度对比分析。结果表明,本研究提出的多尺度DCNN模型的准确率、精确率、召回率、平衡F分数分别为97.75%、96.68%、99.08%、97.85%;与其他模型相比,多尺度DCNN模型结构简单、样本制作简便、识别精度高,具有较好的应用价值。 展开更多
关键词 水稻(Oryza sativa L.) 高分辨率遥感影像 深度学习 种植面积提取 像元分类 深度卷积神经网络(DCNN) 多尺度DCNN模型
在线阅读 下载PDF
芦笋种植面积遥感提取 被引量:2
13
作者 王猛 隋学艳 +2 位作者 梁守真 姚慧敏 侯学会 《遥感信息》 CSCD 北大核心 2016年第1期106-109,共4页
针对传统遥感技术提取芦笋种植面积精度不高的问题,根据芦笋的种植特点,该文以山东省曹县为研究区域,以Landsat 8影像为研究数据,提出了芦笋种植面积的提取方法。通过分析芦笋种植区与其他地物归一化差值植被指数特征,首先利用阈值分割... 针对传统遥感技术提取芦笋种植面积精度不高的问题,根据芦笋的种植特点,该文以山东省曹县为研究区域,以Landsat 8影像为研究数据,提出了芦笋种植面积的提取方法。通过分析芦笋种植区与其他地物归一化差值植被指数特征,首先利用阈值分割方法去除水体、小麦地物,进一步分析芦笋种植区、建筑物和道路等的影像二维特征空间,发现芦笋种植区的土壤线分布规律,并通过波段运算结果确定芦笋种植区阈值,最后进行芦笋种植面积提取。结果表明,曹县的芦笋种植面积为14626.55ha^2,总体精度为84.85%。 展开更多
关键词 特征空间 芦笋 种植面积提取 土壤线 遥感影像
在线阅读 下载PDF
利用高分一号影像提取水稻种植面积方法研究——以长春榆树市为例 被引量:2
14
作者 丁春雨 马冠南 +4 位作者 张晓娇 曹鸿鹏 李勇 谷金英 张磊 《农业与技术》 2016年第7期1-4,19,共5页
利用遥感技术提取水稻种植面积,一直以来都是难点。利用高分1号卫星影像作为数据源,找到一种能快速、准确提取水稻种植面积的方法。通过对水稻成熟期遥感影像的光谱分析,根据水稻成熟期的"蓝移"现象,发现在蓝光和绿光波段光... 利用遥感技术提取水稻种植面积,一直以来都是难点。利用高分1号卫星影像作为数据源,找到一种能快速、准确提取水稻种植面积的方法。通过对水稻成熟期遥感影像的光谱分析,根据水稻成熟期的"蓝移"现象,发现在蓝光和绿光波段光谱特征与其它地类差异明显,并通过波段运算,建立模型,增强了这种差异,使得水稻种植面积提取精度更高。利用东北地区独特的气候特点,把影响水稻种植面积提取的林地去除,利用该方法提取水稻种植面积精度达到93.5%。 展开更多
关键词 水稻 高分1号 种植面积提取 植被指数 光谱特征
在线阅读 下载PDF
用高分一号数据提取玉米面积及精度分析 被引量:28
15
作者 郭燕 武喜红 +2 位作者 程永政 王来刚 刘婷 《遥感信息》 CSCD 北大核心 2015年第6期31-36,共6页
由于受到时间分辨率的影响,长期以来国内遥感技术在面积监测、作物长势监测等方面受到限制。针对此问题,该文利用"高分一号"卫星高空间和高时间分辨率的特点,应用其宽幅16m分辨率数据,结合Landsat-8和RapidEye数据,采用支持... 由于受到时间分辨率的影响,长期以来国内遥感技术在面积监测、作物长势监测等方面受到限制。针对此问题,该文利用"高分一号"卫星高空间和高时间分辨率的特点,应用其宽幅16m分辨率数据,结合Landsat-8和RapidEye数据,采用支持向量机(SVM)和光谱角法(SAM)在许昌进行农作物(玉米)的识别和面积提取及其精度分析。结果表明,"高分一号"4个宽幅传感器的影像应用精度差别较大,其中WFV3数据的作物识别与种植面积提取精度最高,高于Landsat-8,与RapidEye接近;而WFV1和WFV4数据的应用效果较差,不太适用于试验区内复杂的秋季作物类型的识别。总体上讲,SVM分类器的分类精度和Kappa系数都要好于SAM分类器,相比之下SVM更适合于农作物的识别和种植面积提取。 展开更多
关键词 高分一号 作物识别 玉米种植面积提取 支持向量机 光谱角 精度评价
在线阅读 下载PDF
基于MODIS-EVI时间序列与物候特征的水稻面积提取 被引量:7
16
作者 田苗 单捷 +1 位作者 卢必慧 黄晓军 《农业机械学报》 EI CAS CSCD 北大核心 2022年第8期196-202,共7页
物候是植被生理生态过程与环境变化相互作用的体现,时间序列遥感数据的使用有助于揭示水稻物候特征。基于水稻物候特征建立一个可靠的水稻面积监测体系,及时、准确地监测水稻种植面积,对于粮食安全十分重要。本研究以中等分辨率成像光谱... 物候是植被生理生态过程与环境变化相互作用的体现,时间序列遥感数据的使用有助于揭示水稻物候特征。基于水稻物候特征建立一个可靠的水稻面积监测体系,及时、准确地监测水稻种植面积,对于粮食安全十分重要。本研究以中等分辨率成像光谱仪(Moderate resolution imaging spectroradiometer,MODIS)为数据源,选择增强型植被指数(Enhanced vegetation index,EVI),重构2019年和2020年EVI时间序列,提取水稻物候信息,并选择季节积分和生长季振幅两个指标,结合2019年单点EVI时间序列和水稻种植面积的统计数据,确定江苏省13个地级市水稻的季节积分和生长季振幅的阈值,并根据得到的阈值,提取2020年江苏省水稻种植面积。利用2020年水稻种植面积的统计数据和美国陆地卫星-8携带的陆地成像仪(Landsat8 operational land image,Landsat8 OLI)影像,对提取结果进行了精度验证。结果表明,水稻提取的总体精度为92.55%,Kappa系数为0.8463,水稻的制图精度为92.90%,用户精度为89.09%,与统计数据的一致性为93.90%,提取精度较高,在技术上具有可行性。该方法为大区域提取农作物种植面积提供了参考。 展开更多
关键词 MODIS-EVI 水稻物候期 种植面积提取 江苏省
在线阅读 下载PDF
基于谷歌地球引擎的山东省马铃薯种植区面积提取研究 被引量:1
17
作者 赵丽华 张硕基 孙钰婷 《现代农业科技》 2023年第17期72-75,89,共5页
传统马铃薯种植面积估算主要基于地面测量,再逐级上报,时效性和准确性难以得到保障。本文基于谷歌地球引擎(google earth engine,GEE)和哨兵2号(Sentinel-2)遥感影像,对山东省马铃薯种植区进行面积提取和监测。结合实地调查所获数据与... 传统马铃薯种植面积估算主要基于地面测量,再逐级上报,时效性和准确性难以得到保障。本文基于谷歌地球引擎(google earth engine,GEE)和哨兵2号(Sentinel-2)遥感影像,对山东省马铃薯种植区进行面积提取和监测。结合实地调查所获数据与目视解译法进行样本点选取,获取各类地物遥感影像样本;对不同典型地物遥感反射率做归一化处理,通过随机森林算法实现马铃薯种植区从其他地物类型中的有效识别;构建混淆矩阵进行精度验证及对比分析。结果表明:基于GEE对山东省马铃薯种植区面积提取的分类精度达到92.5%,Kappa系数达到0.916,可获取山东省马铃薯种植区整体影像、山东省各地市马铃薯种植面积。试验精度结果良好,与统计年鉴相似性较高,有很大的实际应用意义。本研究实现了大尺度范围对马铃薯种植区面积的提取。 展开更多
关键词 马铃薯 谷歌地球引擎 遥感识别 种植面积提取 山东省
在线阅读 下载PDF
基于Landsat 8影像的济宁市春季主要作物种植面积变化监测 被引量:10
18
作者 巫明焱 董光 +3 位作者 税丽 胡大川 程武学 范曙峰 《江苏农业学报》 CSCD 北大核心 2018年第3期559-569,共11页
准确快速获取小春作物的播种面积、空间分布及年际时空变化信息,可为农业部门制定政策、合理安排生产提供依据。利用多期Landsat 8影像,综合不同作物的光谱特征、纹理、NDVI值等信息,分别建立多时相小春作物提取模型,获取济宁市小麦和... 准确快速获取小春作物的播种面积、空间分布及年际时空变化信息,可为农业部门制定政策、合理安排生产提供依据。利用多期Landsat 8影像,综合不同作物的光谱特征、纹理、NDVI值等信息,分别建立多时相小春作物提取模型,获取济宁市小麦和大蒜的种植信息,分析其时空动态变化。研究结果表明,济宁市大蒜和小麦的种植具有明显的区域性。小麦在农业生产上占据主导地位,空间分布广泛且较为稳定,种植重心偏移量较小且呈逐年下降趋势,其固定种植区的面积每年均稳定在3.2×10~5hm^2左右,2014-2017年,种植面积先增加后减少,但波动幅度较小;大蒜种植区主要集中在金乡县和鱼台县,受气象状况和市场影响,其种植面积呈现先减少后增加的趋势,波动幅度较大,空间分布变化也较为明显,种植重心偏移现象突出。本研究采用面向对象分类方法提取济宁市春季主要作物种植信息,可为农业部门掌握小春作物种植情况,制定农业政策提供一定的技术支持。 展开更多
关键词 冬小麦 大蒜 多光谱遥感 农作物种植面积提取监测
在线阅读 下载PDF
基于多时相合成孔径雷达数据的水稻种植面积监测 被引量:3
19
作者 郭玉娣 李根 +1 位作者 李春 梁冬坡 《江苏农业学报》 CSCD 北大核心 2023年第5期1179-1188,共10页
与光学遥感相比,合成孔径雷达(SAR)遥感能够不受云雨天气影响,为大范围作物种植信息的精准监测提供新手段。本研究以天津市小站稻为例,基于2018-2021年的多时相Sentinel-1A SAR影像,提出了结合小站稻生长特征相似性分析与随机森林分类... 与光学遥感相比,合成孔径雷达(SAR)遥感能够不受云雨天气影响,为大范围作物种植信息的精准监测提供新手段。本研究以天津市小站稻为例,基于2018-2021年的多时相Sentinel-1A SAR影像,提出了结合小站稻生长特征相似性分析与随机森林分类的水稻种植分布和面积监测方法。首先提取VV和VH极化方式下不同地物的后向散射系数时间序列特征曲线,并利用HANTS滤波来消除噪声影响。然后根据野外调查数据获取小站稻参考生长曲线,构建小站稻相似性指数,筛选出小站稻可能种植区域。最后采用随机森林分类模型提取小站稻种植面积。结果表明,基于多时相Sentinel-1A SAR影像相似性分析及随机森林分类能够获得较高精度的水稻种植面积,VV和VH两种极化方式下提取的水稻种植面积与统计年鉴结果的平均相对误差分别为2.67%和3.80%,总体分类精度分别达到95.52%和93.40%,Kappa系数分别为0.94和0.93;与不引入相似性指数进行分类相比,VV和VH极化方式下引入相似性指数后总体分类精度分别提高4.35个百分点和3.13个百分点,Kappa系数分别提高0.04和0.03,水稻的制图精度分别提高3.38个百分点和3.25个百分点。本研究结果为开展高精度水稻种植信息业务化监测提供参考。 展开更多
关键词 合成孔径雷达 随机森林 相似性指数 水稻种植面积提取
在线阅读 下载PDF
基于MODIS-EVI及物候差异免阈值提取黄淮海平原冬小麦面积 被引量:26
20
作者 张莎 张佳华 +1 位作者 白雲 姚凤梅 《农业工程学报》 EI CAS CSCD 北大核心 2018年第11期150-158,共9页
使用植被指数阈值法提取冬小麦种植面积时,通常需要根据区域间物候差异设置不同阈值。针对这一问题,该文以黄淮海平原为研究区,使用农业气象站生育期观测数据和气象再分析资料,利用逐步进入法模拟冬小麦播种期和成熟期,使用Savitzky-Gol... 使用植被指数阈值法提取冬小麦种植面积时,通常需要根据区域间物候差异设置不同阈值。针对这一问题,该文以黄淮海平原为研究区,使用农业气象站生育期观测数据和气象再分析资料,利用逐步进入法模拟冬小麦播种期和成熟期,使用Savitzky-Golay(S-G)滤波重构的MODIS EVI数据逐像元计算播种期至成熟期EVI的峰值频数并结合光谱突变法构建了具有普适性的冬小麦种植面积提取模型。用统计数据验证提取结果表明:在市级尺度和县级尺度上R^2分别为0.91(RMSE 60.08×10~3 hm^2)和0.80(RMSE 8.97×10~3 hm^2)。该文改进的提取模型既考虑了区域间的物候差异,又避免了阈值设置问题,具有一定的普适性,能较好地在大范围内应用于冬小麦面积快速提取,可为大范围内冬小麦监测及估产提供参考。 展开更多
关键词 遥感 农作物 提取 黄淮海平原 物候差异 冬小麦种植面积提取 普适性 MODIS EVI
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部