期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Sentinel-2与时序Sentinel-1 SAR特征的赣南柑橘种植区识别方法 被引量:6
1
作者 唐琪 李恒凯 +1 位作者 周艳兵 王秀丽 《农业机械学报》 EI CAS CSCD 北大核心 2024年第3期193-202,共10页
为准确获取柑橘果园空间分布信息,实现柑橘种植结构调整、产量估算和资源管理,以赣南3个柑橘种植主产区(信丰县、安远县及寻乌县)为研究区域,针对南方地区多云多雨导致传统光学影像较为缺乏的问题,使用Sentinel系列数据和PIE-Engine平台... 为准确获取柑橘果园空间分布信息,实现柑橘种植结构调整、产量估算和资源管理,以赣南3个柑橘种植主产区(信丰县、安远县及寻乌县)为研究区域,针对南方地区多云多雨导致传统光学影像较为缺乏的问题,使用Sentinel系列数据和PIE-Engine平台,构建和优选了光谱特征、植被水体指数特征、红边波段特征和纹理特征,并引入时间序列Sentinel-1合成孔径雷达(SAR)数据的后向散射系数,共同探讨不同特征组合对柑橘种植园的识别提取效果,基于随机森林算法并融合Sentinel-2与时序Sentinel-1 SAR特征识别提取了赣南柑橘种植区。结果表明:5、9、11月柑橘种植园与其他地物的平均后向散射系数分离性最佳,是识别提取柑橘的关键时期;指数特征及纹理特征参与分类改善了分类效果且提高了分类精度;相较于单一SAR特征及指数、纹理特征,加入时序SAR特征的分类结果中总体精度达90.084%,Kappa系数达0.863,错分、漏分误差较小,符合实际地物分布情况,说明了时序SAR特征的可用性和实用性。本研究可为多云多雨的南方柑橘果园的识别提取提供参考。 展开更多
关键词 柑橘 种植区识别 PIE-Engine 时序SAR Sentinel卫星
在线阅读 下载PDF
基于Sentinel-1/2数据特征优选的冬小麦种植区识别方法研究 被引量:20
2
作者 解毅 王佳楠 刘钰 《农业机械学报》 EI CAS CSCD 北大核心 2024年第2期231-241,共11页
为了提高冬小麦种植区识别精度,本文基于谷歌地球引擎(Google Earth Engine,GEE)平台和随机森林算法,对比雷达和光学遥感数据对冬小麦提取效果的差异,并对多类特征变量进行重要性分析,研究特征优选对冬小麦识别精度的影响。选取2019年3... 为了提高冬小麦种植区识别精度,本文基于谷歌地球引擎(Google Earth Engine,GEE)平台和随机森林算法,对比雷达和光学遥感数据对冬小麦提取效果的差异,并对多类特征变量进行重要性分析,研究特征优选对冬小麦识别精度的影响。选取2019年3—5月冬小麦关键生育期的Sentinel-1和Sentinel-2影像为数据源,构建Sentinel-1的极化特征和纹理特征以及Sentinel-2的光谱特征、植被指数特征、植被指数变化率特征共5类特征变量;设置不同数据源和不同特征组合的冬小麦种植区提取方案;对方案中特征变量进行优选,得出最优特征组合,利用最优特征组合对河南省驻马店市冬小麦种植区进行提取。结果表明,无论是否进行特征优选,基于多源遥感数据的冬小麦识别精度均优于仅采用光学或雷达数据的精度;经过特征优选后,各方案的分类精度均有不同程度的提升,说明多源数据特征变量组合和特征优选均能够提高分类精度。不同月份和类型的特征变量对分类精度的贡献率不同,贡献率由大到小为4月、3月和5月;贡献率由大到小的特征类型为极化特征、植被指数变化率特征、植被指数特征、光谱特征和纹理特征。基于多源数据特征优选提取的2019年驻马店冬小麦空间分布最优,总体精度为95.60%,Kappa系数为0.93,冬小麦提取面积与统计年鉴数据相比,相对误差为2.23%。本文可为基于多源光学和雷达遥感影像进行农作物种植区提取的研究提供理论参考。 展开更多
关键词 冬小麦 种植区识别 特征优选 哨兵数据 GEE 随机森林算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部