提出一种基于种子区域生长(Seeded Region Growing,SRG)技术的彩色图像分割方法.该算法利用L*a*b*颜色空间的象素与其邻域的颜色差异及相对欧式距离自动选择种子;应用SRG技术由已知的种子生长出初始分割区域;根据融合了颜色空间和邻接...提出一种基于种子区域生长(Seeded Region Growing,SRG)技术的彩色图像分割方法.该算法利用L*a*b*颜色空间的象素与其邻域的颜色差异及相对欧式距离自动选择种子;应用SRG技术由已知的种子生长出初始分割区域;根据融合了颜色空间和邻接关系的区域距离对初始区域进行分级合并.算法克服了传统区域生长方法不能自动选择种子且容易导致过分割的局限性.将新的分割方法应用到彩色图像,并得到与视觉判断相一致的有意义的分割结果.实验结果显示了所提出的方法对于不同自然彩色图像分割的有效性与适应性.展开更多
影像分割是面向对象影像分析中的重要步骤。为了提高高分辨率遥感影像(high-resolution remote sensing image,HRI)分割算法的性能,提出一种新的影像分割算法,包含种子确定、基于种子区域生长(seeded region growing,SRG)的过分割(advan...影像分割是面向对象影像分析中的重要步骤。为了提高高分辨率遥感影像(high-resolution remote sensing image,HRI)分割算法的性能,提出一种新的影像分割算法,包含种子确定、基于种子区域生长(seeded region growing,SRG)的过分割(advanced SRG,ASRG)和层次区域生长(hierarchical region growing,HRG)3个步骤。利用Gabor纹理特征定义纹理均匀性,将种子自动放置在HRI中同一纹理组成区域的中心位置;在SRG阶段,将HRI光谱信息与斑块形状信息相结合,提出了一种新的合并规则,以提高SRG过分割的精度与分割结果中各个斑块排列的紧凑性;在HRG阶段,提出了一种自适应的阈值,可以更好地保持多尺度分割的特性;在实验部分,采用3景HRI验证了上述方法。利用监督的影像分割评价方法定量评价了该方法的分割精度,并与另外2种主流的遥感影像分割算法进行了对比。结果表明,该方法可以得到令人满意的分割效果。展开更多
文摘提出一种基于种子区域生长(Seeded Region Growing,SRG)技术的彩色图像分割方法.该算法利用L*a*b*颜色空间的象素与其邻域的颜色差异及相对欧式距离自动选择种子;应用SRG技术由已知的种子生长出初始分割区域;根据融合了颜色空间和邻接关系的区域距离对初始区域进行分级合并.算法克服了传统区域生长方法不能自动选择种子且容易导致过分割的局限性.将新的分割方法应用到彩色图像,并得到与视觉判断相一致的有意义的分割结果.实验结果显示了所提出的方法对于不同自然彩色图像分割的有效性与适应性.
文摘影像分割是面向对象影像分析中的重要步骤。为了提高高分辨率遥感影像(high-resolution remote sensing image,HRI)分割算法的性能,提出一种新的影像分割算法,包含种子确定、基于种子区域生长(seeded region growing,SRG)的过分割(advanced SRG,ASRG)和层次区域生长(hierarchical region growing,HRG)3个步骤。利用Gabor纹理特征定义纹理均匀性,将种子自动放置在HRI中同一纹理组成区域的中心位置;在SRG阶段,将HRI光谱信息与斑块形状信息相结合,提出了一种新的合并规则,以提高SRG过分割的精度与分割结果中各个斑块排列的紧凑性;在HRG阶段,提出了一种自适应的阈值,可以更好地保持多尺度分割的特性;在实验部分,采用3景HRI验证了上述方法。利用监督的影像分割评价方法定量评价了该方法的分割精度,并与另外2种主流的遥感影像分割算法进行了对比。结果表明,该方法可以得到令人满意的分割效果。