为了提高异常检测系统的检测率,降低误警率,解决现有异常检测所存在的问题,将离群点挖掘技术应用到异常检测中,提出了一种基于混合式聚类算法的异常检测方法(NADHC)。该方法将基于距离的聚类算法与基于密度的聚类算法相结合从而形成新...为了提高异常检测系统的检测率,降低误警率,解决现有异常检测所存在的问题,将离群点挖掘技术应用到异常检测中,提出了一种基于混合式聚类算法的异常检测方法(NADHC)。该方法将基于距离的聚类算法与基于密度的聚类算法相结合从而形成新的混合聚类算法,通过k-中心点算法找出簇中心,进而去除隐蔽性较高的少量攻击行为样本,再将重复增加样本的方法结合基于密度的聚类算法计算出异常度,从而判断出异常行为。最后在KDD CUP 99数据集上进行实验仿真,验证了所提算法的可行性和有效性。展开更多
The detection of outliers and change points from time series has become research focus in the area of time series data mining since it can be used for fraud detection, rare event discovery, event/trend change detectio...The detection of outliers and change points from time series has become research focus in the area of time series data mining since it can be used for fraud detection, rare event discovery, event/trend change detection, etc. In most previous works, outlier detection and change point detection have not been related explicitly and the change point detections did not consider the influence of outliers, in this work, a unified detection framework was presented to deal with both of them. The framework is based on ALARCON-AQUINO and BARRIA's change points detection method and adopts two-stage detection to divide the outliers and change points. The advantages of it lie in that: firstly, unified structure for change detection and outlier detection further reduces the computational complexity and make the detective procedure simple; Secondly, the detection strategy of outlier detection before change point detection avoids the influence of outliers to the change point detection, and thus improves the accuracy of the change point detection. The simulation experiments of the proposed method for both model data and actual application data have been made and gotten 100% detection accuracy. The comparisons between traditional detection method and the proposed method further demonstrate that the unified detection structure is more accurate when the time series are contaminated by outliers.展开更多
文摘为了提高异常检测系统的检测率,降低误警率,解决现有异常检测所存在的问题,将离群点挖掘技术应用到异常检测中,提出了一种基于混合式聚类算法的异常检测方法(NADHC)。该方法将基于距离的聚类算法与基于密度的聚类算法相结合从而形成新的混合聚类算法,通过k-中心点算法找出簇中心,进而去除隐蔽性较高的少量攻击行为样本,再将重复增加样本的方法结合基于密度的聚类算法计算出异常度,从而判断出异常行为。最后在KDD CUP 99数据集上进行实验仿真,验证了所提算法的可行性和有效性。
基金Project(2011AA040603) supported by the National High Technology Ressarch & Development Program of ChinaProject(201202226) supported by the Natural Science Foundation of Liaoning Province, China
文摘The detection of outliers and change points from time series has become research focus in the area of time series data mining since it can be used for fraud detection, rare event discovery, event/trend change detection, etc. In most previous works, outlier detection and change point detection have not been related explicitly and the change point detections did not consider the influence of outliers, in this work, a unified detection framework was presented to deal with both of them. The framework is based on ALARCON-AQUINO and BARRIA's change points detection method and adopts two-stage detection to divide the outliers and change points. The advantages of it lie in that: firstly, unified structure for change detection and outlier detection further reduces the computational complexity and make the detective procedure simple; Secondly, the detection strategy of outlier detection before change point detection avoids the influence of outliers to the change point detection, and thus improves the accuracy of the change point detection. The simulation experiments of the proposed method for both model data and actual application data have been made and gotten 100% detection accuracy. The comparisons between traditional detection method and the proposed method further demonstrate that the unified detection structure is more accurate when the time series are contaminated by outliers.