提出类别属性数据流数据离群度量——加权频繁模式离群因子(weighted frequent pattern outlier factor,简称WFPOF),并在此基础上给出一种快速数据流离群点检测算法FODFP-Stream(fast outlier detection for high dimensional categoric...提出类别属性数据流数据离群度量——加权频繁模式离群因子(weighted frequent pattern outlier factor,简称WFPOF),并在此基础上给出一种快速数据流离群点检测算法FODFP-Stream(fast outlier detection for high dimensional categorical data streams based on frequent pattern).该算法通过动态发现和维护频繁模式来计算离群度,能够有效地处理高维类别属性数据流,并可进一步扩展到数值属性和混合属性数据流.对仿真数据集和真实数据集的实验检测均验证该算法具有良好的适用性和有效性.展开更多
离群点检测是数据挖掘领域的一个重要分支,当前数据流的离群点检测研究越来越受到关注.为了快速准确地检测出数据流中离群点,提出一种在线数据流离群点检测算法ODDS(outlier detection in online data stream s).它利用数据与频繁模式...离群点检测是数据挖掘领域的一个重要分支,当前数据流的离群点检测研究越来越受到关注.为了快速准确地检测出数据流中离群点,提出一种在线数据流离群点检测算法ODDS(outlier detection in online data stream s).它利用数据与频繁模式的相异程度来度量数据的离群程度,通过构建ODDS-Tree树,能动态地更新数据流中候选离群点的离群信息.实验结果验证了该算法与其他同类算法相比具有较高的效率与优良的可扩展性能.展开更多
文摘提出类别属性数据流数据离群度量——加权频繁模式离群因子(weighted frequent pattern outlier factor,简称WFPOF),并在此基础上给出一种快速数据流离群点检测算法FODFP-Stream(fast outlier detection for high dimensional categorical data streams based on frequent pattern).该算法通过动态发现和维护频繁模式来计算离群度,能够有效地处理高维类别属性数据流,并可进一步扩展到数值属性和混合属性数据流.对仿真数据集和真实数据集的实验检测均验证该算法具有良好的适用性和有效性.
文摘离群点检测是数据挖掘领域的一个重要分支,当前数据流的离群点检测研究越来越受到关注.为了快速准确地检测出数据流中离群点,提出一种在线数据流离群点检测算法ODDS(outlier detection in online data stream s).它利用数据与频繁模式的相异程度来度量数据的离群程度,通过构建ODDS-Tree树,能动态地更新数据流中候选离群点的离群信息.实验结果验证了该算法与其他同类算法相比具有较高的效率与优良的可扩展性能.