-
题名基于深度学习的拟态裁决方法研究
被引量:3
- 1
-
-
作者
杨晓晗
程国振
刘文彦
张帅
郝兵
-
机构
信息工程大学信息技术研究所
网络空间安全教育部重点实验室
嵩山实验室
-
出处
《通信学报》
EI
CSCD
北大核心
2024年第2期79-89,共11页
-
基金
河南省重大科技专项基金资助项目(No.221100211200)。
-
文摘
针对软硬件差异化容易导致拟态裁决结果不一致所造成的假阳现象被误认为网络攻击的问题,提出了一种基于深度学习的拟态裁决方法。通过构建无监督的自编码-解码深度学习模型,挖掘不同执行体输出多样化正常响应数据的深度语义特征,分析归纳其统计规律,并通过设计基于离线学习-在线裁决联动的训练机制和基于反馈优化机制来解决假阳现象,从而准确检测网络攻击,提高目标系统的安全弹性。鉴于软硬件差异导致正常响应数据间的统计规律已被深度学习模型理解掌握,因此不同执行体间拟态裁决结果将保持一致,即目标系统处于安全状态。一旦目标系统受到网络攻击,执行体的响应数据将偏离深度学习模型的统计规律,致使拟态裁决结果不一致,即目标系统存在潜在安全威胁。实验结果表明,所提方法的检测性能显著优于主流的拟态裁决方法,且平均预测准确度提升了14.89%,有利于将该方法集成到真实应用的拟态化改造来增强系统的防护能力。
-
关键词
拟态防御
主动防御
拟态裁决
深度学习
离线训练-在线裁决
-
Keywords
mimic defense
active defense
mimic decision
deep learning
offline learning-online decision-making
-
分类号
TP393.08
[自动化与计算机技术—计算机应用技术]
-