期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进条件生成对抗网络的书法字骨架提取 被引量:3
1
作者 张子珺 陈劲松 钱夕元 《计算机工程》 CAS CSCD 北大核心 2023年第10期272-279,共8页
书法字骨架保留书法字的结构、形态以及笔画细节,对于评价书法字笔画结构极为重要。为解决现有的骨架提取算法无法获取离线书法图像的动态信息,提出改进条件生成对抗网络的书法字骨架提取算法。为获取长距离上下文信息,将残差结构与分... 书法字骨架保留书法字的结构、形态以及笔画细节,对于评价书法字笔画结构极为重要。为解决现有的骨架提取算法无法获取离线书法图像的动态信息,提出改进条件生成对抗网络的书法字骨架提取算法。为获取长距离上下文信息,将残差结构与分层空洞卷积模块引入条件生成对抗网络,并融合交叉注意力模块,以保证生成骨架的平滑性。使用谱归一化和Leaky ReLU激活函数稳定模型训练,提升书法字骨架提取的完整性,并基于在线手写字数据集,构建伪书法字图像数据集。实验结果表明,该算法在测试数据集中的F1值、联合交并比(IoU)和最小平均距离(AMD)分别为0.678 2、0.515 8和1.450 0,相较于现有骨架提取算法的最优结果,F1值、IoU分别提高了8.2%和8.8%,AMD降低了约0.42,可有效捕获到书法离线图像的动态信息,使骨架特征更具有代表性,在书法字帖图片上表现出较优的泛化能力。同时,消融实验结果验证了分层空洞卷积模块和交叉注意力模块的有效性,可以获得更完整、光滑的字符骨架。 展开更多
关键词 pix2pix算法 骨架提取 分层空洞卷积 交叉注意力 离线书法图像
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部