期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Lévy-Feller对流-扩散过程
1
作者 刘青霞 刘发旺 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第2期171-174,共4页
考虑Lévy-Feller对流-扩散过程,应用Laplace和Fourier变换及其逆变换导出了用格林函数表示的Lévy-Feller对流-扩散方程的解析解,结果中去掉对流项的特殊情况与Mainardi等的研究结果是一致的.利用Riesz-Feller,Riemann-Li-ouvi... 考虑Lévy-Feller对流-扩散过程,应用Laplace和Fourier变换及其逆变换导出了用格林函数表示的Lévy-Feller对流-扩散方程的解析解,结果中去掉对流项的特殊情况与Mainardi等的研究结果是一致的.利用Riesz-Feller,Riemann-Li-ouville和Grünwald-Letnikov分数阶导数之间的关系,按照Grünwald-Letnikov定义对Riesz-Feller分数阶导数进行离散,得到了近似Lévy-Feller对流-扩散方程的一种两层的有限差分格式.最后,对上述的两层有限差分格式在一定条件下进行了离散随机游走的解释. 展开更多
关键词 Lévy-Feller对流-扩散方程 Riesz-Feller Ricmann-Liouville Grünwald-Letnikov 分数阶导数 离散随机游走模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部