期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
Lévy-Feller对流-扩散过程
1
作者
刘青霞
刘发旺
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第2期171-174,共4页
考虑Lévy-Feller对流-扩散过程,应用Laplace和Fourier变换及其逆变换导出了用格林函数表示的Lévy-Feller对流-扩散方程的解析解,结果中去掉对流项的特殊情况与Mainardi等的研究结果是一致的.利用Riesz-Feller,Riemann-Li-ouvi...
考虑Lévy-Feller对流-扩散过程,应用Laplace和Fourier变换及其逆变换导出了用格林函数表示的Lévy-Feller对流-扩散方程的解析解,结果中去掉对流项的特殊情况与Mainardi等的研究结果是一致的.利用Riesz-Feller,Riemann-Li-ouville和Grünwald-Letnikov分数阶导数之间的关系,按照Grünwald-Letnikov定义对Riesz-Feller分数阶导数进行离散,得到了近似Lévy-Feller对流-扩散方程的一种两层的有限差分格式.最后,对上述的两层有限差分格式在一定条件下进行了离散随机游走的解释.
展开更多
关键词
Lévy-Feller对流-扩散方程
Riesz-Feller
Ricmann-Liouville
Grünwald-Letnikov
分数阶导数
离散随机游走模型
在线阅读
下载PDF
职称材料
题名
Lévy-Feller对流-扩散过程
1
作者
刘青霞
刘发旺
机构
厦门大学数学科学学院
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第2期171-174,共4页
基金
国家自然科学基金(10271098)资助
文摘
考虑Lévy-Feller对流-扩散过程,应用Laplace和Fourier变换及其逆变换导出了用格林函数表示的Lévy-Feller对流-扩散方程的解析解,结果中去掉对流项的特殊情况与Mainardi等的研究结果是一致的.利用Riesz-Feller,Riemann-Li-ouville和Grünwald-Letnikov分数阶导数之间的关系,按照Grünwald-Letnikov定义对Riesz-Feller分数阶导数进行离散,得到了近似Lévy-Feller对流-扩散方程的一种两层的有限差分格式.最后,对上述的两层有限差分格式在一定条件下进行了离散随机游走的解释.
关键词
Lévy-Feller对流-扩散方程
Riesz-Feller
Ricmann-Liouville
Grünwald-Letnikov
分数阶导数
离散随机游走模型
Keywords
Lévy-Feller advection-dispersion equation
fractional-order derivative
Riesz-Feller
Riemann-Liouville
Grünwald-Letnikov definition
discrete random walk model
分类号
O241.82 [理学—计算数学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
Lévy-Feller对流-扩散过程
刘青霞
刘发旺
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
2006
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部