针对目前跟踪式太阳能光伏电池发电系统跟踪误差较大、抗干扰性较差、系统耗能较高等问题,融合大功率点追踪(maximum power point tracking,MPPT)和智能寻光感知技术设计了套太阳能光伏电池跟踪系统,实现了光电转化效率的大化。运用投...针对目前跟踪式太阳能光伏电池发电系统跟踪误差较大、抗干扰性较差、系统耗能较高等问题,融合大功率点追踪(maximum power point tracking,MPPT)和智能寻光感知技术设计了套太阳能光伏电池跟踪系统,实现了光电转化效率的大化。运用投影原理研制了寻光传感器,加入光强感测单元构成智能寻光感知模块,消除气候条件影响实现系统全天候的运行工作。为降低系统功耗,将跟踪方式设计为离散式,系统空闲时断电待机。对实现大功率点跟踪的扰动观察法进行优化改进,提出差别化扰动方式避免了扰动观察法在大功率点附近产生震荡及光强变化时的误动作。经实验验证,该系统跟踪分辨力可达到0.344?,系统误差小于2.5°,系统充电效率提高40%以上。展开更多
Signal filtering and differential acquisition are classic yet challenging issues in control engineering.The discrete-time optimal control(DTOC)based on classic tracking differentiator(TD)can effectively extract differ...Signal filtering and differential acquisition are classic yet challenging issues in control engineering.The discrete-time optimal control(DTOC)based on classic tracking differentiator(TD)can effectively extract differentiation signals and filter signals,while eliminating the chattering problem that arises during the discretization of the continuous solution.However,under external disturbance,the convergence mode may change,leading to overshoot and noise amplification.In this paper,a dual-switching strategy is proposed,which can alternate between the base double-integral system and its dual system according to the quadrant of the system’s state.And a novel linearized control law is also introduced,deriving a novel dual-switch tracking differentiator.Further analysis of system convergence and time optimality is provided.Simulation results show that the application of this dual-switching strategy notably reduces overshoot in both tracking and differential signals while enhancing noise filtering performance.Moreover,experiments conducted on a permanent magnet synchronous motor(PMSM)platform,where the proposed TD acts as a filter in the speed feedback loop,demonstrate that the standard deviation between the reference speed and the target speed(at a constant speed of 378 r/min)decreased from 5.63 r/min to 4.93 r/min,compared to the moving average algorithm.展开更多
文摘针对目前跟踪式太阳能光伏电池发电系统跟踪误差较大、抗干扰性较差、系统耗能较高等问题,融合大功率点追踪(maximum power point tracking,MPPT)和智能寻光感知技术设计了套太阳能光伏电池跟踪系统,实现了光电转化效率的大化。运用投影原理研制了寻光传感器,加入光强感测单元构成智能寻光感知模块,消除气候条件影响实现系统全天候的运行工作。为降低系统功耗,将跟踪方式设计为离散式,系统空闲时断电待机。对实现大功率点跟踪的扰动观察法进行优化改进,提出差别化扰动方式避免了扰动观察法在大功率点附近产生震荡及光强变化时的误动作。经实验验证,该系统跟踪分辨力可达到0.344?,系统误差小于2.5°,系统充电效率提高40%以上。
基金Project(QZKFKT2023-012)supported by the State Key Laboratory of Heavy-duty and Express High-power Electric Locomotive,China。
文摘Signal filtering and differential acquisition are classic yet challenging issues in control engineering.The discrete-time optimal control(DTOC)based on classic tracking differentiator(TD)can effectively extract differentiation signals and filter signals,while eliminating the chattering problem that arises during the discretization of the continuous solution.However,under external disturbance,the convergence mode may change,leading to overshoot and noise amplification.In this paper,a dual-switching strategy is proposed,which can alternate between the base double-integral system and its dual system according to the quadrant of the system’s state.And a novel linearized control law is also introduced,deriving a novel dual-switch tracking differentiator.Further analysis of system convergence and time optimality is provided.Simulation results show that the application of this dual-switching strategy notably reduces overshoot in both tracking and differential signals while enhancing noise filtering performance.Moreover,experiments conducted on a permanent magnet synchronous motor(PMSM)platform,where the proposed TD acts as a filter in the speed feedback loop,demonstrate that the standard deviation between the reference speed and the target speed(at a constant speed of 378 r/min)decreased from 5.63 r/min to 4.93 r/min,compared to the moving average algorithm.