期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
面向离散粒子多尺度分析CPU/GPU架构的并行近邻搜索算法
1
作者 代长威 孔瑞林 季哲 《计算机工程与科学》 CSCD 北大核心 2024年第8期1349-1360,共12页
离散粒子法在解决前沿科学和工程领域中的复杂多尺度问题中具有广泛的应用。针对离散粒子大规模多尺度计算中相邻粒子对搜索过程计算复杂度显著增加和并发度下降的问题,提出了一种适用于众核架构(CPU/GPU)的高并发、低内存占用并行近邻... 离散粒子法在解决前沿科学和工程领域中的复杂多尺度问题中具有广泛的应用。针对离散粒子大规模多尺度计算中相邻粒子对搜索过程计算复杂度显著增加和并发度下降的问题,提出了一种适用于众核架构(CPU/GPU)的高并发、低内存占用并行近邻搜索算法。通过提出一种基于多层嵌套网格概念的层间相互作用方法,解决了不同层级间粒子对相互搜索时的数据竞争问题;通过引入非对称映射方法,避免了粒子在多级链表上的全映射,降低了内存消耗。一系列数值实验表明,该算法可有效处理108量级粒子体积跨度变化的多尺度问题,相较于传统算法可取得2~8倍的加速效果和更低的内存消耗特性,基于GPU的算法实现可达到当前领先的计算效率。 展开更多
关键词 离散粒子法 多尺度分析 近邻搜索 并行算
在线阅读 下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
2
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
在线阅读 下载PDF
A discrete multi-swarm optimizer for radio frequency identification network scheduling 被引量:1
3
作者 陈瀚宁 朱云龙 《Journal of Central South University》 SCIE EI CAS 2014年第1期199-212,共14页
Due to the effectiveness, simple deployment and low cost, radio frequency identification (RFID) systems are used in a variety of applications to uniquely identify physical objects. The operation of RFID systems ofte... Due to the effectiveness, simple deployment and low cost, radio frequency identification (RFID) systems are used in a variety of applications to uniquely identify physical objects. The operation of RFID systems often involves a situation in which multiple readers physically located near one another may interfere with one another's operation. Such reader collision must be minimized to avoid the faulty or miss reads. Specifically, scheduling the colliding RFID readers to reduce the total system transaction time or response time is the challenging problem for large-scale RFID network deployment. Therefore, the aim of this work is to use a successful multi-swarm cooperative optimizer called pseo to minimize both the reader-to-reader interference and total system transaction time in RFID reader networks. The main idea of pS20 is to extend the single population PSO to the interacting multi-swarm model by constructing hierarchical interaction topology and enhanced dynamical update equations. As the RFID network scheduling model formulated in this work is a discrete problem, a binary version of PS20 algorithm is proposed. With seven discrete benchmark functions, PS20 is proved to have significantly better performance than the original PSO and a binary genetic algorithm, pS20 is then used for solving the real-world RFID network scheduling problem. Numerical results for four test cases with different scales, ranging from 30 to 200 readers, demonstrate the performance of the proposed methodology. 展开更多
关键词 reader interference RFID network scheduling pS2O swarm intelligence discrete optimization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部