期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于离散式多样性评价策略的自适应粒子群优化算法 被引量:12
1
作者 汤可宗 肖绚 +1 位作者 贾建华 徐星 《南京理工大学学报》 EI CAS CSCD 北大核心 2013年第3期344-349,共6页
为了通过增强种群多样性提高对粒子全局寻优能力与寻优速度的平衡能力,该文提出一种自适应粒子群优化(APSO)算法。基于种群熵对标准粒子群优化(SPSO)算法的多样性进行了研究,给出一种离散式多样性评价策略。为了均衡SPSO算法的勘探和开... 为了通过增强种群多样性提高对粒子全局寻优能力与寻优速度的平衡能力,该文提出一种自适应粒子群优化(APSO)算法。基于种群熵对标准粒子群优化(SPSO)算法的多样性进行了研究,给出一种离散式多样性评价策略。为了均衡SPSO算法的勘探和开发能力,该文分析了SPSO算法的惯性权值随多样性评价值变化而变化的动态函数关系,并将该函数关系融入APSO算法。为防止算法搜索后期过早陷入局部最优点,采用一种变异策略增强种群的多样性。仿真结果证明:APSO算法相比耗散粒子群优化(DPSO)算法,增加了对未探测空间的搜索能力,加速了粒子在整个解空间的寻优过程。在开发阶段,惯性权值随多样性的减少而递减,在勘探阶段,惯性权值随多样性的增加而增加。APSO算法较好地平衡了算法的全局搜索和局部细致搜索能力,可使粒子在较大范围空间内快速寻找到最优解所在的区域,并展开细致搜索。 展开更多
关键词 离散式多样性评价策略 粒子群优化 变异策略
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部