建立了一种结合仿射不变离散哈希(Affined-invariant discrete hashing,AIDH)和条件随机场(Confidential random field,CRF)的模型,实现遥感图像的目标检测。对遥感图像进行超像素分割,构建适用于CRF的以超像素块为顶点的无向图结构。...建立了一种结合仿射不变离散哈希(Affined-invariant discrete hashing,AIDH)和条件随机场(Confidential random field,CRF)的模型,实现遥感图像的目标检测。对遥感图像进行超像素分割,构建适用于CRF的以超像素块为顶点的无向图结构。以超像素块作为测试样本,使用AIDH学习方法作为CRF一元势函数,生成初始类别标签。采用Potts模型构建CRF的二元势函数进行标签的再学习,平滑目标邻域信息,解决目标检测中的漏判问题。最后,使用基于凸壳边界的方法生成最小外接目标框作为目标检测结果。实验表明,本文方法在目标检测的精度和效率上取得了较好的平衡。展开更多
跨模态哈希检索以其较高的检索效率和较低的存储成本,在跨模态检索领域受到了广泛的关注.现有的跨模态哈希大多直接从多模态数据中学习哈希码,不能充分利用数据的语义信息,因此无法保证数据低维特征在模态间的分布一致性,解决这个问题...跨模态哈希检索以其较高的检索效率和较低的存储成本,在跨模态检索领域受到了广泛的关注.现有的跨模态哈希大多直接从多模态数据中学习哈希码,不能充分利用数据的语义信息,因此无法保证数据低维特征在模态间的分布一致性,解决这个问题的关键之一是要准确地度量多模态数据之间的相似度.为此,提出一种基于对抗投影学习的哈希(adversarial projection learning based Hashing for cross-modal retrieval,APLH)方法用于跨模态检索.利用对抗训练学习来自不同模态的低维特征,并保证低维特征在模态间的分布一致性.在此基础上,利用跨模态投影匹配约束(cross-modal projection matching,CMPM),最小化特征投影匹配分布和标签投影匹配分布之间的KL(Kullback-Leibler)散度,利用标签信息使数据低维特征之间的相似度结构与语义空间中的相似度结构趋于一致.此外,在哈希码学习阶段,引入加权余弦三元组损失进一步利用数据的语义信息;且为减小哈希码的量化损失,使用离散优化的方法优化哈希函数.在3个跨模态数据集MIRFlickr25K,NUS-WIDE,Wikipedia上,以不同码位计算mAP,且所提方法的mAP值均优于其他算法,验证了其在跨模态哈希检索上的优越性、鲁棒性以及CMPM的有效性.展开更多
文摘建立了一种结合仿射不变离散哈希(Affined-invariant discrete hashing,AIDH)和条件随机场(Confidential random field,CRF)的模型,实现遥感图像的目标检测。对遥感图像进行超像素分割,构建适用于CRF的以超像素块为顶点的无向图结构。以超像素块作为测试样本,使用AIDH学习方法作为CRF一元势函数,生成初始类别标签。采用Potts模型构建CRF的二元势函数进行标签的再学习,平滑目标邻域信息,解决目标检测中的漏判问题。最后,使用基于凸壳边界的方法生成最小外接目标框作为目标检测结果。实验表明,本文方法在目标检测的精度和效率上取得了较好的平衡。
文摘跨模态哈希检索以其较高的检索效率和较低的存储成本,在跨模态检索领域受到了广泛的关注.现有的跨模态哈希大多直接从多模态数据中学习哈希码,不能充分利用数据的语义信息,因此无法保证数据低维特征在模态间的分布一致性,解决这个问题的关键之一是要准确地度量多模态数据之间的相似度.为此,提出一种基于对抗投影学习的哈希(adversarial projection learning based Hashing for cross-modal retrieval,APLH)方法用于跨模态检索.利用对抗训练学习来自不同模态的低维特征,并保证低维特征在模态间的分布一致性.在此基础上,利用跨模态投影匹配约束(cross-modal projection matching,CMPM),最小化特征投影匹配分布和标签投影匹配分布之间的KL(Kullback-Leibler)散度,利用标签信息使数据低维特征之间的相似度结构与语义空间中的相似度结构趋于一致.此外,在哈希码学习阶段,引入加权余弦三元组损失进一步利用数据的语义信息;且为减小哈希码的量化损失,使用离散优化的方法优化哈希函数.在3个跨模态数据集MIRFlickr25K,NUS-WIDE,Wikipedia上,以不同码位计算mAP,且所提方法的mAP值均优于其他算法,验证了其在跨模态哈希检索上的优越性、鲁棒性以及CMPM的有效性.