Broadband near-infrared(NIR)luminescent materials have shown great promise in applications such as optical communication,biomedicine,and optoelectronic devices.However,the current research is focused on phos⁃phors and...Broadband near-infrared(NIR)luminescent materials have shown great promise in applications such as optical communication,biomedicine,and optoelectronic devices.However,the current research is focused on phos⁃phors and glasses,and it is important to develop broadband NIR luminescent nanomaterials.Here,we report an erbi⁃um-sensitized core-shell nanocrystal design for broadband NIR emission.Based on the structural design with suitable dopings of Tm^(3+)and Ho^(3+),the broadband NIR emission covering 1.5-2.1μm region is achieved under 980 nm and 808 nm excitations.Moreover,the emission intensity is further enhanced by introducing Yb^(3+)and Nd^(3+)into the sam⁃ple,respectively,and the energy transfer processes between them are systematically discussed.Our results present a novel approach for developing broadband NIR luminescent materials and devices.展开更多
文摘Broadband near-infrared(NIR)luminescent materials have shown great promise in applications such as optical communication,biomedicine,and optoelectronic devices.However,the current research is focused on phos⁃phors and glasses,and it is important to develop broadband NIR luminescent nanomaterials.Here,we report an erbi⁃um-sensitized core-shell nanocrystal design for broadband NIR emission.Based on the structural design with suitable dopings of Tm^(3+)and Ho^(3+),the broadband NIR emission covering 1.5-2.1μm region is achieved under 980 nm and 808 nm excitations.Moreover,the emission intensity is further enhanced by introducing Yb^(3+)and Nd^(3+)into the sam⁃ple,respectively,and the energy transfer processes between them are systematically discussed.Our results present a novel approach for developing broadband NIR luminescent materials and devices.