期刊文献+
共找到1,088篇文章
< 1 2 55 >
每页显示 20 50 100
基于混沌莱维粒子群算法的机械臂轨迹规划
1
作者 盖荣丽 王康 王晓红 《组合机床与自动化加工技术》 北大核心 2025年第5期101-105,109,共6页
针对传统粒子群算法在求解机械臂轨迹优化问题时存在的搜索精度不够、容易陷入局部最优等问题,提出了一种混沌莱维粒子群优化算法(TLPSO)。对标准粒子群算法(PSO)进行优化,引入Tent混沌映射和莱维飞行的方法进行改进,提高了算法的搜索... 针对传统粒子群算法在求解机械臂轨迹优化问题时存在的搜索精度不够、容易陷入局部最优等问题,提出了一种混沌莱维粒子群优化算法(TLPSO)。对标准粒子群算法(PSO)进行优化,引入Tent混沌映射和莱维飞行的方法进行改进,提高了算法的搜索能力和跳出局部最优解能力。以六自由度机械臂为研究对象,建立时间优化目标模型,以3-5-3多项式插值方法为基础对其进行轨迹规划。将该算法应用于求解多种测试函数以及机器人时间最优轨迹规划问题,与遗传算法改进的粒子群算法(PSO-GA)、鲸鱼优化算法(WOA)和布谷鸟搜索算法(CS)相比,该算法取得了较好的效果。优化后得到的机械臂位移、速度和加速度曲线平滑、无突变。结果表明,所提出的优化算法能够有效降低轨迹的执行时间。 展开更多
关键词 粒子算法 Tent混沌映射 莱维飞行 时间最优 轨迹规划
在线阅读 下载PDF
粒子群算法多目标优化下的超混沌人脸图像加密
2
作者 余锦伟 谢巍 +1 位作者 张浪文 余孝源 《控制理论与应用》 北大核心 2025年第5期875-884,共10页
本文将粒子群优化算法(PSO)与超混沌系统相结合,提出一种基于多目标优化的人脸图像加密方案.该方案通过PSO算法协同优化多项加密评估指标,包括相关关系、像素变化率(NPCR)、统一平均变化强度(UACI)和信息熵.首先,初始化混沌系统的控制参... 本文将粒子群优化算法(PSO)与超混沌系统相结合,提出一种基于多目标优化的人脸图像加密方案.该方案通过PSO算法协同优化多项加密评估指标,包括相关关系、像素变化率(NPCR)、统一平均变化强度(UACI)和信息熵.首先,初始化混沌系统的控制参数,并采用SHA-256算法生成混沌系统的初始值,迭代生成高敏感性的随机序列;其次,利用随机序列执行像素置乱、扩散和行列置乱操作,生成初始加密人脸图像;然后,将加密人脸图像视为PSO算法的个体,通过迭代更新个体的位置优化考虑多项指标的适应性函数;最后,确定混沌系统的最优参数,并得到最佳的加密人脸图像.实验结果表明,本文的方法在信息熵、像素相关系数、NPCR和UACI方面的表现都优于主流方法,这说明本文所提方法具有更高的安全性. 展开更多
关键词 混沌系统 粒子算法 图像加密 智能优化 人脸隐私保护
在线阅读 下载PDF
基于粒子群优化算法的量子卷积神经网络
3
作者 张嘉雯 蔡彬彬 林崧 《量子电子学报》 北大核心 2025年第1期123-135,共13页
针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在... 针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在图像分类任务上表现优异的电路结构。基于Fashion MNIST和MNIST标准数据集的仿真实验表明,该模型具有较强的学习能力和良好的泛化性能,准确率分别可达94.7%和99.05%。相较于现有量子卷积神经网络模型,平均分类精度最高分别提升了4.14%和1.43%。 展开更多
关键词 量子光学 量子卷积神经网络 粒子优化算法 量子机器学习 参数化量子电路
在线阅读 下载PDF
应用多策略改进量子粒子群算法的直流电与Rayleigh波联合反演
4
作者 朱春光 管泓清 +3 位作者 秦天 张富翔 王强 高远 《石油地球物理勘探》 北大核心 2025年第1期137-151,共15页
针对浅地表地质分层问题,文中分析了直流电(DC)法与Rayleigh波(RW)法共同探测并进行数据联合反演的可行性,重点研究了融合多种优化策略后形成的基于重心反向学习(Centroid Opposition-Based Learning,COBL)和混沌搜索(Chaos Search,CS)... 针对浅地表地质分层问题,文中分析了直流电(DC)法与Rayleigh波(RW)法共同探测并进行数据联合反演的可行性,重点研究了融合多种优化策略后形成的基于重心反向学习(Centroid Opposition-Based Learning,COBL)和混沌搜索(Chaos Search,CS)的量子行为粒子群(Quantum-behaved Particle Swarm Optimization,QPSO)算法(简称为COBL-CS-QPSO算法)应用于二者的一维联合反演。通过联合反演可以从电阻率数据中提取层厚信息,弥补单独Rayleigh波反演难以精确解析层厚的问题;同时多策略算法的引入使解在搜索过程中不易陷入局部最优,并加强了不确定环境下的随机搜索效率。理论模型实验考虑了无噪声与有噪声以及已知模型层数与未知模型层数的多种情况,并使模型反演在宽泛的搜索区间内进行,最终取得了良好的反演效果。随后将该联合反演算法应用于实际数据,结果表明基于COBL-CS-QPSO算法的直流电与Rayleigh波联合反演在无钻孔信息或未知地下详细分层的条件下,能够获得相比于单独方法更为准确的结果。同时与自适应粒子群(APSO)算法的对比也体现了改进算法的反演优势。 展开更多
关键词 Rayleigh 波法 直流电法 联合反演 量子行为粒子算法 重心反向学习 混沌搜索 无限折叠的迭代混 沌映射 浅地表
在线阅读 下载PDF
面向柔性作业车间调度问题的混沌编码量子粒子群优化算法
5
作者 胥远兴 张孟健 王德光 《系统仿真学报》 CAS CSCD 北大核心 2024年第10期2371-2382,共12页
为解决柔性作业车间调度问题,提出一种混沌编码量子粒子群优化算法。针对标准量子粒子群优化算法中粒子过早收敛于局部最优值的缺点,提出具有扰动行为的自适应收缩-扩张系数和关联粒子适应度值的计算方法,改善算法的全局搜索能力;通过... 为解决柔性作业车间调度问题,提出一种混沌编码量子粒子群优化算法。针对标准量子粒子群优化算法中粒子过早收敛于局部最优值的缺点,提出具有扰动行为的自适应收缩-扩张系数和关联粒子适应度值的计算方法,改善算法的全局搜索能力;通过引入混沌边界变异策略,减少粒子大量聚集在边界的概率,增加种群的多样性来提高搜索最优解的能力;针对量子粒子群优化算法的迭代特性,设计一种适用的混沌编码策略。将提出的改进量子粒子群优化算法应用于柔性作业车间调度问题,并通过多种基准算例与标准量子粒子群优化算法、粒子群优化算法和混合遗传算法进行对比,验证所提算法的性能。实验结果表明:混沌编码量子粒子群优化算法具有更好的稳定性和更强的寻优能力。 展开更多
关键词 量子粒子优化算法 柔性作业车间调度 扰动行为 混沌映射 收缩-扩张系数
在线阅读 下载PDF
基于改进量子粒子群算法的新能源汽车换电站优化布局 被引量:5
6
作者 韩顺杰 于渲铎 +1 位作者 李东奇 董吉哲 《科学技术与工程》 北大核心 2024年第27期11720-11725,共6页
为了针对在新能源换电汽车发展普及过程中的换电站建设相关问题,通过建立以换电站运营目标年限年均综合费用最小为目标,综合考虑土地价格、建站成本、运营成本、维护成本、道路流量、服务能力等因素的优化目标数学模型,以换电能力、换... 为了针对在新能源换电汽车发展普及过程中的换电站建设相关问题,通过建立以换电站运营目标年限年均综合费用最小为目标,综合考虑土地价格、建站成本、运营成本、维护成本、道路流量、服务能力等因素的优化目标数学模型,以换电能力、换电距离为约束条件。同时利用改进的量子粒子群算法对模型求解,算法引入自适应调整的惯性权重,提高粒子的整体搜索能力,利用Logistic混沌映射初始化种群信息,提升种群的遍历性,通过Levy飞行策略与Cauchy变异策略,提升种群的多样性并扩大算法在迭代过程中的搜索空间,进一步提升算法的全局搜索能力并快速跳出局部最优区域。利用该算法对长春市宽城区进行实际规划,将该区域相关数据引入建立的数学模型,确定了该区域内建设四座换电站时符合预期建设目标,同时确定各电站建设位置及容量,证明研究结果的可行性与实用性。 展开更多
关键词 新能源汽车 改进量子粒子算法 换电站 选址定容
在线阅读 下载PDF
基于遗传粒子群算法的超混沌S盒设计 被引量:2
7
作者 陆雅雯 李正权 +2 位作者 谭立容 顾斌 邢松 《江苏大学学报(自然科学版)》 CAS 北大核心 2024年第6期701-708,共8页
针对目前基于混沌系统所构造的S盒难以拥有良好密码学性能的问题,提出一种基于超混沌系统及遗传粒子群优化算法的S盒设计方案.在一维混沌映射基础上,引入正余弦函数以及指数因子,构造一个二维超混沌系统,从系统分叉图、相图、Lyapunov... 针对目前基于混沌系统所构造的S盒难以拥有良好密码学性能的问题,提出一种基于超混沌系统及遗传粒子群优化算法的S盒设计方案.在一维混沌映射基础上,引入正余弦函数以及指数因子,构造一个二维超混沌系统,从系统分叉图、相图、Lyapunov指数图进行性能分析,该混沌系统在参数范围内有着连续的超混沌区间,混沌行为复杂.通过改变混沌系统的初值、参数以及迭代次数可以动态生成S盒,随后结合粒子群优化算法和遗传算法提出一种针对S盒的遗传粒子群优化算法,将混沌系统生成的S盒作为初始种群,利用粒子群算法改进遗传算法中的交叉操作,同时结合爬山算法提出一种新的变异策略.为验证所生成S盒性能,对S盒的双射特性、非线性度、严格雪崩准则、差分均匀性及输出比特间独立性进行仿真测试,仿真结果表明:所提出的优化算法能够生成非线性度、差分均匀性、输出比特间独立性方面表现良好的S盒. 展开更多
关键词 S盒 混沌系统 LYAPUNOV指数 粒子优化算法 遗传算法 爬山算法
在线阅读 下载PDF
基于混沌与量子粒子群算法相结合的负荷模型参数辨识研究 被引量:29
8
作者 王振树 卞绍润 +2 位作者 刘晓宇 于凯 石云鹏 《电工技术学报》 EI CSCD 北大核心 2014年第12期211-217,共7页
负荷建模是电力系统建模中亟待解决的难题。负荷特性数据、负荷模型结构以及参数辨识是影响实测负荷建模结果的重要因素。本文提出了混沌与量子粒子群算法相结合的负荷模型参数辨识方法。实测数据验证结果表明,该方法相对于常用的粒子... 负荷建模是电力系统建模中亟待解决的难题。负荷特性数据、负荷模型结构以及参数辨识是影响实测负荷建模结果的重要因素。本文提出了混沌与量子粒子群算法相结合的负荷模型参数辨识方法。实测数据验证结果表明,该方法相对于常用的粒子群算法及量子粒子群算法在计算精度、收敛速度等方面都具有明显优势,应用于负荷模型参数辨识提高了负荷模型的准确性。 展开更多
关键词 混沌优化算法 量子粒子算法 故障录波 参数辨识 负荷建模
在线阅读 下载PDF
基于混沌量子粒子群算法的含风电场电力系统实时调度 被引量:28
9
作者 王魁 张步涵 +1 位作者 周杨 李俊芳 《电力系统自动化》 EI CSCD 北大核心 2011年第22期141-146,共6页
分析了大规模风电给电力系统实时调度所带来的若干问题,依据节能减排原则,以消纳风电最大化和火电机组一次能源消耗最小化为双重目标,建立了含大规模风电的实时调度模型。在量子粒子群算法基础上加入混沌初始化和混沌扰动,形成混沌量子... 分析了大规模风电给电力系统实时调度所带来的若干问题,依据节能减排原则,以消纳风电最大化和火电机组一次能源消耗最小化为双重目标,建立了含大规模风电的实时调度模型。在量子粒子群算法基础上加入混沌初始化和混沌扰动,形成混沌量子粒子群优化算法。基于修改的IEEE-118节点系统进行仿真计算,结果表明:建立的模型能在最大程度消纳风电的前提下,最大限度地减少一次能源消耗,达到节能减排的目的;采用的算法计算速度快、收敛性能好,满足实时性的要求。 展开更多
关键词 混沌量子粒子优化算法 风电场 实时调度 风电消纳
在线阅读 下载PDF
混沌量子粒子群优化算法 被引量:21
10
作者 林星 冯斌 孙俊 《计算机工程与设计》 CSCD 北大核心 2008年第10期2610-2612,共3页
针对量子粒子群优化算法在处理高维复杂函数时存在的收敛速度慢、易陷入局部极小等问题,提出了混沌量子粒子群优化算法。采用了基于群体适应值方差的早熟判断机制,同时提出了一种基于混沌搜索的新方法,提高了搜索效率。数值实验结果表明... 针对量子粒子群优化算法在处理高维复杂函数时存在的收敛速度慢、易陷入局部极小等问题,提出了混沌量子粒子群优化算法。采用了基于群体适应值方差的早熟判断机制,同时提出了一种基于混沌搜索的新方法,提高了搜索效率。数值实验结果表明,混沌量子粒子群算法效率高、优化性能好,且具有很强的避免陷入局部最优的能力,其性能远远优于一般的粒子群算法和量子粒子群算法。 展开更多
关键词 量子粒子优化算法 混沌搜索 早熟 效率高 粒子算法
在线阅读 下载PDF
基于混沌量子粒子群算法的无线传感器网络覆盖优化 被引量:16
11
作者 王伟 朱娟娟 +2 位作者 万家山 乔焰 李旸 《传感技术学报》 CAS CSCD 北大核心 2016年第2期290-296,共7页
针对传统粒子群算法在求解无线传感器网络覆盖问题上存在的收敛速度慢、易陷入局部极值等缺陷,以提高传感器网络覆盖率为主要优化目标,提出了基于量子粒子群和Logistic混沌映射相结合的优化算法CQPSO。该算法基于量子δ势阱模型,同时引... 针对传统粒子群算法在求解无线传感器网络覆盖问题上存在的收敛速度慢、易陷入局部极值等缺陷,以提高传感器网络覆盖率为主要优化目标,提出了基于量子粒子群和Logistic混沌映射相结合的优化算法CQPSO。该算法基于量子δ势阱模型,同时引入精英个体适应值方差的早熟判断机制,提高了搜索效率。仿真结果表明,对比基本粒子群、混沌粒子群以及量子粒子群三种算法,该算法在覆盖率、均匀度以及平均移动距离指标方面具有更好的覆盖优化效果。 展开更多
关键词 无线传感器网络 混沌搜索 量子粒子 覆盖优化
在线阅读 下载PDF
一种改进的混沌量子粒子群优化算法 被引量:10
12
作者 陈义雄 梁昔明 黄亚飞 《计算机工程》 CAS CSCD 2013年第8期253-256,共4页
通过将量子粒子群优化算法和佳点集法相结合,提出一种改进的混沌量子粒子群优化算法,用于解决复杂函数问题。将佳点集融合到量子粒子群算法中,以提高解空间的遍历性,对函数实现全局寻优。用混沌序列改变惯性权重w,调节粒子群优化算法的... 通过将量子粒子群优化算法和佳点集法相结合,提出一种改进的混沌量子粒子群优化算法,用于解决复杂函数问题。将佳点集融合到量子粒子群算法中,以提高解空间的遍历性,对函数实现全局寻优。用混沌序列改变惯性权重w,调节粒子群优化算法的全局和局部寻优能力。采用线性递减速度比例收缩因子η提高搜索速度,避免早熟收敛。用量子Hadamard门对量子编码进行变异,增强种群的多样性,促使粒子跳出局部极值点。对典型复杂函数的仿真结果表明,该混合算法寻优效率高、收敛速度快,能有效避免早熟收敛。 展开更多
关键词 混沌 量子粒子优化 佳点集 收缩因子 早熟收敛 量子Hadamard门
在线阅读 下载PDF
基于混沌机制的混合量子粒子群优化算法 被引量:7
13
作者 谷海红 齐名军 李士勇 《计算机工程》 CAS CSCD 北大核心 2009年第12期164-165,168,共3页
针对量子粒子群优化算法在处理一般复杂函数时可以找到函数最优解但容易陷入局部极小等问题,提出利用混沌搜索解决早熟收敛的混合量子粒子群算法CODPSO。数值实验结果表明,与量子粒子群优化算法相比,该算法效率高、优化性能好,具有较强... 针对量子粒子群优化算法在处理一般复杂函数时可以找到函数最优解但容易陷入局部极小等问题,提出利用混沌搜索解决早熟收敛的混合量子粒子群算法CODPSO。数值实验结果表明,与量子粒子群优化算法相比,该算法效率高、优化性能好,具有较强的避免局部极小能力,对初值具有较强的鲁棒性。 展开更多
关键词 量子粒子优化算法 混沌优化 早熟
在线阅读 下载PDF
基于量子行为粒子群优化算法-混沌神经网络的电力系统负荷预测 被引量:5
14
作者 王冰山 周步祥 +1 位作者 肖贤 林楠 《电工电能新技术》 CSCD 北大核心 2014年第6期7-12,共6页
提出了一种基于量子行为粒子群优化算法和混沌神经网络相结合的电力系统负荷预测方法。根据粒子群的量子行为特征,采用全同粒子系更新粒子的位置,改善传统的粒子群算法精度低、易发散、收敛速度慢等缺点。利用粒子群优化算法优化出混沌... 提出了一种基于量子行为粒子群优化算法和混沌神经网络相结合的电力系统负荷预测方法。根据粒子群的量子行为特征,采用全同粒子系更新粒子的位置,改善传统的粒子群算法精度低、易发散、收敛速度慢等缺点。利用粒子群优化算法优化出混沌神经网络的权值和阈值,克服混沌神经网络参数确定难度大、速度慢的缺点。然后利用得到的权值和阈值,通过改进粒子群优化算法-混沌神经网络模型,得到预测日的相应时刻负荷值。最后通过实际应用,证明该方法有较高的预测精度和较好的准确性,具备一定的实际应用价值。 展开更多
关键词 量子行为 粒子 全同粒子 混沌神经网络 负荷预测
在线阅读 下载PDF
基于混沌变异算子的小生境量子粒子群算法 被引量:5
15
作者 冯斌 王璋 孙俊 《计算机应用与软件》 CSCD 2009年第1期50-52,共3页
针对粒子群算法早熟收敛和搜索精度低的问题,提出了基于混沌变异的小生境量子粒子群算法(NCQPSO)。该算法结合小生境技术并加入了淘汰机制。使算法具有良好的全局寻优能力。变尺度混沌变异具有精细的局部遍历搜索性能。使算法具有较高... 针对粒子群算法早熟收敛和搜索精度低的问题,提出了基于混沌变异的小生境量子粒子群算法(NCQPSO)。该算法结合小生境技术并加入了淘汰机制。使算法具有良好的全局寻优能力。变尺度混沌变异具有精细的局部遍历搜索性能。使算法具有较高的搜索精度,实验结果表明,NCQPSO算法可有效避免标准PSO(Particle Swarm Optimization)算法的早熟收敛,具有寻优能力强、搜索精度高、稳定性好等优点。也优于原始的量子粒子群算法QPSO(Quantum-behaved Particle Swarm Optimization)。 展开更多
关键词 混沌变异 小生境 粒子优化算法 量子粒子优化算法
在线阅读 下载PDF
基于权重自适应调整的混沌量子粒子群算法的城市电动汽车充电站优化布局 被引量:10
16
作者 于擎 李菁华 +1 位作者 赵前扶 邢春阳 《电测与仪表》 北大核心 2017年第13期110-114,119,共6页
针对城市电动汽车充电站的定容和选址的问题,从实际情况出发,建立将土地价格、建设成本、运行成本、交通流量、服务距离、服务能力考虑在内的数学模型,该模型以年均综合费用最小为目标,以充电能力,充电距离为约束条件。采用权重自适应... 针对城市电动汽车充电站的定容和选址的问题,从实际情况出发,建立将土地价格、建设成本、运行成本、交通流量、服务距离、服务能力考虑在内的数学模型,该模型以年均综合费用最小为目标,以充电能力,充电距离为约束条件。采用权重自适应调整的混沌量子粒子群算法对北方的某市某区进行规划,该算法在迭代过程中会根据粒子不同的适应值,对惯性权重做出相应的调整,从而调整对粒子的搜索能力。利用混沌算子的遍历性,使得该算法具有很好的收敛速度和精度。利用该算法对所建立的数学模型进行求解,经过进一步的筛选,确定了该地区充电站的建址坐标、容量和费用。 展开更多
关键词 电动汽车 权重自适应调整的混沌量子粒子算法 充电站 选址 定容
在线阅读 下载PDF
混沌量子粒子群算法在模型修正中的应用 被引量:5
17
作者 秦玉灵 孔宪仁 罗文波 《计算机工程与应用》 CSCD 北大核心 2010年第2期240-242,共3页
混沌粒子群算法和量子粒子群算法在一定程度上改进了标准粒子群算法的搜索质量,但两者仍存在收敛速度慢、易陷入局部极小等问题。混沌量子粒子群算法将混沌搜索机制引入量子粒子群算法,提高了搜索效率和计算质量。用粒子群算法、混沌粒... 混沌粒子群算法和量子粒子群算法在一定程度上改进了标准粒子群算法的搜索质量,但两者仍存在收敛速度慢、易陷入局部极小等问题。混沌量子粒子群算法将混沌搜索机制引入量子粒子群算法,提高了搜索效率和计算质量。用粒子群算法、混沌粒子群算法、量子粒子群算法和混沌量子粒子群算法对一平板结构进行模型修正,结果表明,混沌量子粒子群算法具有较高的搜索效率和避免陷入局部最优的能力,修正后的模型比单独采用混沌或者量子粒子群算法具有更高的修正精度。 展开更多
关键词 收敛速度 局部极小 混沌量子粒子 模型修正
在线阅读 下载PDF
一种混沌优化机制的双量子粒子群优化算法 被引量:7
18
作者 齐名军 杨爱红 《计算机工程与应用》 CSCD 北大核心 2009年第30期34-36,39,共4页
针对量子粒子群优化算法(quantum delta Particle Swarm Optimization,PSO)在处理高维复杂函数时存在收敛速度慢、易陷入局部最优和算法通用性不强等缺点,提出了一种基于混沌优化机制的双量子粒子群优化算法。它借鉴群体位置方差的早熟... 针对量子粒子群优化算法(quantum delta Particle Swarm Optimization,PSO)在处理高维复杂函数时存在收敛速度慢、易陷入局部最优和算法通用性不强等缺点,提出了一种基于混沌优化机制的双量子粒子群优化算法。它借鉴群体位置方差的早熟判断机制,同时提出了一种逐步缩小搜索变量空间的新方法。典型数值实验表明,该算法效率高、优化性能好、对初始位置具有很强的鲁棒性。尤其是该算法具有很强的避免局部极小能力,其性能远远优于单一优化方法。 展开更多
关键词 量子粒子优化算法 混沌优化机制 早熟机制
在线阅读 下载PDF
基于改进量子粒子群优化算法的机器人逆运动学求解 被引量:9
19
作者 陈卓凡 周坤 +1 位作者 秦菲菲 王斌锐 《中国机械工程》 EI CAS CSCD 北大核心 2024年第2期293-304,共12页
针对工业机器人在逆运动学求解过程中存在的位姿奇异、解不唯一、求解精度低等问题,提出了一种改进量子粒子群算法。首先,利用D-H参数法建立机器人运动学模型,以机械臂末端最小位姿误差为主要优化目标,加入运动前后关节角变化最小、行... 针对工业机器人在逆运动学求解过程中存在的位姿奇异、解不唯一、求解精度低等问题,提出了一种改进量子粒子群算法。首先,利用D-H参数法建立机器人运动学模型,以机械臂末端最小位姿误差为主要优化目标,加入运动前后关节角变化最小、行程平稳连续的约束条件,设计了目标函数;其次,通过采用Levy飞行策略改进粒子更新方式、非线性地动态调整收缩膨胀因子、采用变权重方法计算最优平均位置等方法设计了一种改进量子粒子群优化(IQPSO)算法;然后,模拟单点位姿和连续轨迹两种不同的求解情况进行三种算法(IQPSO、APSO、QPSO)的仿真对比实验,结果表明IQPSO算法具有收敛速度快、求解精度高等优点;最后,将IQPSO算法用于机械臂本体进行实物验证,实验结果表明IQPSO算法求解出的插值点所组成的轨迹连续且平滑,进一步证明了该算法应用于实际运动控制中的稳定性和可行性。 展开更多
关键词 工业机器人 逆运动学求解 目标函数 改进量子粒子优化算法
在线阅读 下载PDF
ACCQPSO:一种改进的量子粒子群优化算法及其应用
20
作者 孙隽丰 李成海 宋亚飞 《信息网络安全》 CSCD 北大核心 2024年第4期574-586,共13页
针对量子粒子群优化算法前期易陷入局部极值点、后期寻优精度不高等问题,文章提出一种自适应交叉算子的混沌量子粒子群优化算法,并将其应用于BP神经网络超参数寻优。首先,利用Logistics映射初始种群为混沌序列进行最优解搜索,增强初始... 针对量子粒子群优化算法前期易陷入局部极值点、后期寻优精度不高等问题,文章提出一种自适应交叉算子的混沌量子粒子群优化算法,并将其应用于BP神经网络超参数寻优。首先,利用Logistics映射初始种群为混沌序列进行最优解搜索,增强初始种群的随机性与遍历性,提高算法寻优能力;然后,通过纵向交叉操作进行种群中个体的信息交换,并引入自适应交叉概率公式,增加种群多样性,提高算法的寻优精度;最后,在实验中,一方面,选取8个函数在高低两个维度进行验证,同时进行Wilcoxon秩和检验分析以及消融实验,验证该算法相较其他算法的有效性;另一方面,通过算法优化BP神经网络应用到网络安全态势预测任务中,实验结果表明该算法收敛速度相较于对比算法有大幅度提升。 展开更多
关键词 量子粒子优化算法 混沌映射 交叉算子 自适应调整策略 BP神经网络
在线阅读 下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部