期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于候选聚类的K调和均值算法(KHM-CC) 被引量:1
1
作者 陈改霞 王建平 《火力与指挥控制》 CSCD 北大核心 2016年第1期48-52,共5页
聚类分析是常见的数据分析技术。基于KHM的聚类分析是当前研究的热点。提出了基于候选聚类的KHM算法(KHM-CC),详细阐述了算法的设计过程。采用UCI的小样本(iris)数据集和大样本(Bag of Words)数据集对比了KHM-CC算法和禁忌搜索KHM算法(K... 聚类分析是常见的数据分析技术。基于KHM的聚类分析是当前研究的热点。提出了基于候选聚类的KHM算法(KHM-CC),详细阐述了算法的设计过程。采用UCI的小样本(iris)数据集和大样本(Bag of Words)数据集对比了KHM-CC算法和禁忌搜索KHM算法(KHM-TS)和变邻域搜索KHM算法(KHM-VNS)的性能。实验结果表明,KHM-CC算法在处理iris数据集小样本数据集时,其性能和KHM-VNS算法基本接近,而优于KHM-TS算法。但是在处理Bag of Words大样本数据集时,性能优于KHM-VNS和KHM-TS算法,其聚类计算耗时明显缩短,证实KHM-CC算法在高维度数据集的处理上更具优势。 展开更多
关键词 聚类分析 数据分析 候选聚类khm算法(khm-CC) 禁忌搜索khm算法(khm) 变邻域搜索khm算法(khm-VNS)
在线阅读 下载PDF
基于改进引力搜索的混合K-调和均值聚类算法研究 被引量:11
2
作者 王彩霞 《计算机应用研究》 CSCD 北大核心 2016年第1期118-121,共4页
为了解决聚类算法容易陷入局部最优的问题,以及增强聚类算法的全局搜索能力,基于KHM算法以及改进的引力搜索算法,提出一种混合K-调和均值聚类算法(G-KHM)。G-KHM算法具有KHM算法收敛速度快的优点,但同时针对KHM算法容易陷入局部最优解... 为了解决聚类算法容易陷入局部最优的问题,以及增强聚类算法的全局搜索能力,基于KHM算法以及改进的引力搜索算法,提出一种混合K-调和均值聚类算法(G-KHM)。G-KHM算法具有KHM算法收敛速度快的优点,但同时针对KHM算法容易陷入局部最优解的问题,在初始化后数据开始搜索聚类中心时采用了一种基于对象多样性及收敛性增强的引力搜索算法,该方法改进了引力搜索算法容易失去种群多样性的缺点,并同时具有引力搜索算法较强的全局搜索能力,可以使算法收敛到全局最优解。仿真结果表明,G-KHM算法能有效地避免陷入局部极值,具有较强的全局搜索能力以及稳定性,并且相比KHM算法、K-means聚类算法、C均值聚类算法以及粒子群算法,在分类精度和运行时间上表现出了更好的效果。 展开更多
关键词 混合K-调和均值聚类 khm算法 改进引力搜索算法 全局搜索能力
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部