The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific re...The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields.展开更多
One of the most important characters of blasting, a basic step of surface mining, is rock fragmentation. It directly effects on the costs of drilling and economics of the subsequent operations of loading, hauling and ...One of the most important characters of blasting, a basic step of surface mining, is rock fragmentation. It directly effects on the costs of drilling and economics of the subsequent operations of loading, hauling and crushing in mines. Adaptive neuro-fuzzy inference system (ANFIS) and radial basis function (RBF) show potentials for modeling the behavior of complex nonlinear processes such as those involved in frag- mentation due to blasting of rocks. In this paper we developed ANFIS and RBF methods for modeling of sizing of rock fragmentation due to bench blasting by estimation of 80% passing size (Kso) of Golgohar iron ore mine of Sirjan, lran. Comparing the results of ANFIS and RBF models shows that although the sta- tistical parameters RBF model is acceptable but the ANFIS proposed model is superior and also simpler because the ANFIS model is constructed using only two input parameters while seven input parameters used for construction of the RBF model.展开更多
One of the most important reasons for the serious damage of embankment dams is their impermissible settlement.Therefore,it can be stated that the prediction of settlement of a dam is of paramount importance.This study...One of the most important reasons for the serious damage of embankment dams is their impermissible settlement.Therefore,it can be stated that the prediction of settlement of a dam is of paramount importance.This study aims to apply intelligent methods to predict settlement after constructing central core rockfill dams.Attempts were made in this research to prepare models for predicting settlement of these dams using the information of 35 different central core rockfill dams all over the world and Adaptive Neuro-Fuzzy Interface System(ANFIS) and Gene Expression Programming(GEP) methods.Parameters such as height of dam(H) and compressibility index(Ci) were considered as the input parameters.Finally,a form was designed using visual basic software for predicting dam settlement.With respect to the accuracy of the results obtained from the intelligent methods,they can be recommended for predicting settlement after constructing central core rockfill dams for the future plans.展开更多
The main purpose of current study is development of an intelligent model for estimation of shear wave velocity in limestone. Shear wave velocity is one of the most important rock dynamic parameters. Because rocks have...The main purpose of current study is development of an intelligent model for estimation of shear wave velocity in limestone. Shear wave velocity is one of the most important rock dynamic parameters. Because rocks have complicated structure, direct determination of this parameter takes time, spends expenditure and requires accuracy. On the other hand, there are no precise equations for indirect determination of it; most of them are empirical. By using data sets of several dams of Iran and neuro-genetic, adaptive neuro-fuzzy inference system (ANFIS), and gene expression programming (GEP) methods, models are rendered for prediction of shear wave velocity in limestone. Totally, 516 sets of data has been used for modeling. From these data sets, 413 ones have been utilized for building the intelligent model, and 103 have been used for their performance evaluation. Compressional wave velocity (Vp), density (7) and porosity (.n), were considered as input parameters. Respectively, the amount of R for neuro-genetic and ANFIS networks was 0.959 and 0.963. In addition, by using GEP, three equations are obtained; the best of them has 0.958R. ANFIS shows the best prediction results, whereas GEP indicates proper equations. Because these equations have accuracy, they could be used for prediction of shear wave velocity for limestone in the future.展开更多
The spontaneous combustion is a smoldering process and characterized by a slow burning speed and a long duration. Therefore, it is a hazard to coal mines. Early detection of coal mine spontaneous combustion is quite d...The spontaneous combustion is a smoldering process and characterized by a slow burning speed and a long duration. Therefore, it is a hazard to coal mines. Early detection of coal mine spontaneous combustion is quite difficult because of the complexity of different coal mines. And the traditional threshold discriminance is not suitable for spontaneous combustion detection due to the uncertainty of coalmine combustion. Restrictions of the single detection method will also affect the detection precision in the early time of spontaneous combustion. Although multiple detection methods can be adopted as a complementarity to improve the accuracy of detection, the synthesized method will in- crease the complicacy of criterion, making it difficult to estimate the combustion. To solve this problem, a fuzzy inference system based on CRI (Compositional Rule of Inference) and fuzzy reasoning method FITA (First Infer Then Aggregate) are presented. And the neural network is also developed to realize the fuzzy inference system. Finally, the effectiveness of the inference system is demonstrated bv means of an experiment.展开更多
Construction of metro tunnels in dense and crowded urban areas is faced with many risks, such as sub- sidence. The purpose of this paper was the prediction of subsidence risk by failure mode and effect anal- ysis (F...Construction of metro tunnels in dense and crowded urban areas is faced with many risks, such as sub- sidence. The purpose of this paper was the prediction of subsidence risk by failure mode and effect anal- ysis (FMEA) and fuzzy inference system (FIS). Fuzzy theory will be able to model uncertainties. Fuzzy FMEA provides a tool that can work in a better way with vague concepts and without sufficient informa- tion than conventional FMEA. In this paper, S and D are obtained from fuzzy rules and 0 is obtained from artificial neural network (ANN). FMEA is performed by developing a fuzzy risk priority number (FRPN). The FRPN for two stations in Tehran No.4 subway line is 3.1 and 5.5, respectively. To investigate the suit- ability of this approach, the predictions by FMEA have been compared with actual data. The results show that this method can be useful in the prediction of subsidence risk in urban tunnels.展开更多
A direct feedback control system based on fuzzy recurrent neural network is proposed, and a method of training weights of fuzzy recurrent neural network was designed by applying modified contract mapping genetic algor...A direct feedback control system based on fuzzy recurrent neural network is proposed, and a method of training weights of fuzzy recurrent neural network was designed by applying modified contract mapping genetic algorithm. Computer simulation results indicate that fuzzy recurrent neural network controller has perfect dynamic and static performances .展开更多
基金Supported by the Soft Science Program of Jiangsu Province(BR2010079)~~
文摘The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields.
基金supported by Islamic Azad University,Malayer Branch,the special fund (No.2293),for basicresearch project
文摘One of the most important characters of blasting, a basic step of surface mining, is rock fragmentation. It directly effects on the costs of drilling and economics of the subsequent operations of loading, hauling and crushing in mines. Adaptive neuro-fuzzy inference system (ANFIS) and radial basis function (RBF) show potentials for modeling the behavior of complex nonlinear processes such as those involved in frag- mentation due to blasting of rocks. In this paper we developed ANFIS and RBF methods for modeling of sizing of rock fragmentation due to bench blasting by estimation of 80% passing size (Kso) of Golgohar iron ore mine of Sirjan, lran. Comparing the results of ANFIS and RBF models shows that although the sta- tistical parameters RBF model is acceptable but the ANFIS proposed model is superior and also simpler because the ANFIS model is constructed using only two input parameters while seven input parameters used for construction of the RBF model.
文摘One of the most important reasons for the serious damage of embankment dams is their impermissible settlement.Therefore,it can be stated that the prediction of settlement of a dam is of paramount importance.This study aims to apply intelligent methods to predict settlement after constructing central core rockfill dams.Attempts were made in this research to prepare models for predicting settlement of these dams using the information of 35 different central core rockfill dams all over the world and Adaptive Neuro-Fuzzy Interface System(ANFIS) and Gene Expression Programming(GEP) methods.Parameters such as height of dam(H) and compressibility index(Ci) were considered as the input parameters.Finally,a form was designed using visual basic software for predicting dam settlement.With respect to the accuracy of the results obtained from the intelligent methods,they can be recommended for predicting settlement after constructing central core rockfill dams for the future plans.
文摘The main purpose of current study is development of an intelligent model for estimation of shear wave velocity in limestone. Shear wave velocity is one of the most important rock dynamic parameters. Because rocks have complicated structure, direct determination of this parameter takes time, spends expenditure and requires accuracy. On the other hand, there are no precise equations for indirect determination of it; most of them are empirical. By using data sets of several dams of Iran and neuro-genetic, adaptive neuro-fuzzy inference system (ANFIS), and gene expression programming (GEP) methods, models are rendered for prediction of shear wave velocity in limestone. Totally, 516 sets of data has been used for modeling. From these data sets, 413 ones have been utilized for building the intelligent model, and 103 have been used for their performance evaluation. Compressional wave velocity (Vp), density (7) and porosity (.n), were considered as input parameters. Respectively, the amount of R for neuro-genetic and ANFIS networks was 0.959 and 0.963. In addition, by using GEP, three equations are obtained; the best of them has 0.958R. ANFIS shows the best prediction results, whereas GEP indicates proper equations. Because these equations have accuracy, they could be used for prediction of shear wave velocity for limestone in the future.
基金Project 20050290010 supported by the Doctoral Foundation of Chinese Education Ministry and 2005AA133070 by National 863 Program for High Technique Research Development
文摘The spontaneous combustion is a smoldering process and characterized by a slow burning speed and a long duration. Therefore, it is a hazard to coal mines. Early detection of coal mine spontaneous combustion is quite difficult because of the complexity of different coal mines. And the traditional threshold discriminance is not suitable for spontaneous combustion detection due to the uncertainty of coalmine combustion. Restrictions of the single detection method will also affect the detection precision in the early time of spontaneous combustion. Although multiple detection methods can be adopted as a complementarity to improve the accuracy of detection, the synthesized method will in- crease the complicacy of criterion, making it difficult to estimate the combustion. To solve this problem, a fuzzy inference system based on CRI (Compositional Rule of Inference) and fuzzy reasoning method FITA (First Infer Then Aggregate) are presented. And the neural network is also developed to realize the fuzzy inference system. Finally, the effectiveness of the inference system is demonstrated bv means of an experiment.
文摘Construction of metro tunnels in dense and crowded urban areas is faced with many risks, such as sub- sidence. The purpose of this paper was the prediction of subsidence risk by failure mode and effect anal- ysis (FMEA) and fuzzy inference system (FIS). Fuzzy theory will be able to model uncertainties. Fuzzy FMEA provides a tool that can work in a better way with vague concepts and without sufficient informa- tion than conventional FMEA. In this paper, S and D are obtained from fuzzy rules and 0 is obtained from artificial neural network (ANN). FMEA is performed by developing a fuzzy risk priority number (FRPN). The FRPN for two stations in Tehran No.4 subway line is 3.1 and 5.5, respectively. To investigate the suit- ability of this approach, the predictions by FMEA have been compared with actual data. The results show that this method can be useful in the prediction of subsidence risk in urban tunnels.
文摘A direct feedback control system based on fuzzy recurrent neural network is proposed, and a method of training weights of fuzzy recurrent neural network was designed by applying modified contract mapping genetic algorithm. Computer simulation results indicate that fuzzy recurrent neural network controller has perfect dynamic and static performances .