期刊文献+
共找到11,091篇文章
< 1 2 250 >
每页显示 20 50 100
沙柳平茬刀具减磨优化——基于PSO-BP神经网络结合GA算法 被引量:2
1
作者 韩志武 刘志刚 +3 位作者 常涛涛 裴承慧 张鹏峰 张建强 《农机化研究》 北大核心 2025年第8期259-265,共7页
沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬... 沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬试验获取不同锯齿结构下的磨损退化量数据,基于磨损数据建立PSO(Particle Swarm Optimization)算法优化的BP(Back Propagation)神经网络模型,用于预测圆锯片的磨损量;然后,将训练好的PSO-BP神经网络模型与GA(Genetic Algorithm)算法相结合,以磨损量最小为优化目标,寻找圆锯片锯齿结构的最优参数。结果表明:所建立的模型成功实现了对圆锯片前角、后角、前刀面斜磨角等结构参数的多目标优化,优化得到的圆锯片参数使磨损量相对最小,提升了圆锯片的减磨性能。由此为进一步改善沙柳平茬圆锯片的切削及减磨损性能提供了新的设计思路,为提高沙柳平茬工作效率提供了技术支持,有利于生态环境保护和农业可持续发展。 展开更多
关键词 沙柳 平茬圆锯片 减磨优化 pso-bp神经网络 遗传算法
在线阅读 下载PDF
小样本下基于改进麻雀算法优化卷积神经网络的飞轮储能系统损耗 被引量:2
2
作者 魏乐 李承霖 +1 位作者 房方 刘渝斌 《电网技术》 北大核心 2025年第1期366-372,I0113-I0115,共10页
飞轮储能系统具有待机损耗,不适合长期储能。针对飞轮损耗这一经济指标,基于飞轮储能系统运行的小样本数据,提出了一种结合Logistic混沌麻雀优化算法和卷积神经网络的飞轮损耗计算模型。首先,分析了飞轮损耗产生的原因;接下来对宁夏灵... 飞轮储能系统具有待机损耗,不适合长期储能。针对飞轮损耗这一经济指标,基于飞轮储能系统运行的小样本数据,提出了一种结合Logistic混沌麻雀优化算法和卷积神经网络的飞轮损耗计算模型。首先,分析了飞轮损耗产生的原因;接下来对宁夏灵武电厂的飞轮运行数据进行预处理,并使用对抗生成网络进行小样本扩充;然后基于卷积神经网络建立损耗模型,使用改进的麻雀算法对模型超参数进行优化,并通过对比验证了该模型的优越性;最后通过仿真实验证明了该模型能够优化飞轮储能系统的出力,降低飞轮损耗。 展开更多
关键词 飞轮储能系统损耗 小样本学习 卷积神经网络 麻雀搜索算法 LOGISTIC混沌映射
在线阅读 下载PDF
基于深度神经网络的遗传算法对抗攻击 被引量:1
3
作者 范海菊 马锦程 李名 《河南师范大学学报(自然科学版)》 北大核心 2025年第2期82-90,I0007,共10页
深度神经网络(deep neural network,DNN)能够取得良好的分类识别效果,但在训练图像中添加微小扰动进行对抗攻击,其识别准确率会大大下降.在提出的方法中,通过遗传算法得到最优扰动后,修改图像极少的像素生成对抗样本,实现对VGG16等3个... 深度神经网络(deep neural network,DNN)能够取得良好的分类识别效果,但在训练图像中添加微小扰动进行对抗攻击,其识别准确率会大大下降.在提出的方法中,通过遗传算法得到最优扰动后,修改图像极少的像素生成对抗样本,实现对VGG16等3个基于卷积神经网络图像分类器的成功攻击.实验结果表明在对3个分类模型进行单像素攻击时,67.92%的CIFAR-10数据集中的自然图像可以被扰动到至少一个目标类,平均置信度为79.57%,攻击效果会随着修改像素的增加进一步提升.此外,相比于LSA和FGSM方法,攻击效果有着显著提升. 展开更多
关键词 卷积神经网络 遗传算法 对抗攻击 图像分类 信息安全
在线阅读 下载PDF
基于模糊神经网络-粒子群优化算法的电机直驱操动机构速度环控制参数优化方法
4
作者 黎卫国 马丽娟 +4 位作者 张长虹 杨旭 李明洋 肖曦 王潇 《电气工程学报》 北大核心 2025年第3期20-27,共8页
电机直驱操动机构作为一种融合电力电子器件与永磁同步电机的新型操动机构,具备传动结构简单、控制柔性高、数字化能力强等优势。针对在实际运行工况中,电机直驱操动机构负载的变化导致速度环性能下降的问题,提出一种基于模糊神经网络(F... 电机直驱操动机构作为一种融合电力电子器件与永磁同步电机的新型操动机构,具备传动结构简单、控制柔性高、数字化能力强等优势。针对在实际运行工况中,电机直驱操动机构负载的变化导致速度环性能下降的问题,提出一种基于模糊神经网络(Fuzzy neural network,FNN)-粒子群优化(Particle swarm optimization,PSO)算法的电机直驱操动机构速度环控制参数优化方法,标准PSO算法用于优化电机直驱操动机构中永磁同步电机(Permanent magnet synchronous motor,PMSM)控制系统的速度环PI(Proportional integral,PI)参数,而FNN算法用于优化PSO算法中的惯性权重。首先,建立PMSM数学模型,并分析速度环PI控制器参数设计方法;其次,基于标准PSO算法对电机直驱操动机构中PMSM控制系统速度环PI控制器参数优化进行分析;随后,结合FNN算法对标准PSO算法中的惯性权重进行优化;最终,通过试验验证了所提方法的有效性。试验结果表明,该方法能够提高电机直驱操动机构控制系统速度环性能,为电机直驱操动机构在面对系统惯量变化时的控制性能提升提供了一种有效的解决方案。 展开更多
关键词 高压断路器 操动机构 模糊神经网络 粒子群算法
在线阅读 下载PDF
基于PSO-BP神经网络高速公路建设期碳排放预测方法
5
作者 赵全胜 李斐 +4 位作者 郭风爱 于建游 徐士钊 胡运朋 褚晓萌 《河北科技大学学报》 北大核心 2025年第3期312-321,共10页
为了解决高速公路建设期碳排放预测不精准的问题,提出了粒子群优化(particle swarm optimization,PSO)算法优化BP(back propagation)神经网络预测碳排放的方法。采用层次分析法(analytic hierarchy process,AHP)从工程长度层、工程建设... 为了解决高速公路建设期碳排放预测不精准的问题,提出了粒子群优化(particle swarm optimization,PSO)算法优化BP(back propagation)神经网络预测碳排放的方法。采用层次分析法(analytic hierarchy process,AHP)从工程长度层、工程建设层、能源消耗层与材料消耗层4个维度凝练出路线长度、路基长度、路面长度、隧道长度、桥涵长度、互通区长度、挖方量、填方量、柴油消耗量、水泥消耗量、碎石消耗量和钢筋消耗量12个关键指标;获取36个高速公路项目数据作为模型训练的实证样本,结合误差指标进行对比分析。结果表明,所得PSO-BP模型R2为0.974,BP模型R2为0.890,前者更接近于1;与生命周期法结果相比较,PSO-BP比未优化的BP与真实值之间偏差更小。划分的4个维度层和选择的12个关键指标使得在高速公路设计规划阶段即可预测得到建设期的碳排放,为高速公路的低碳建设提供了参考。 展开更多
关键词 道路工程其他学科 碳排放预测 pso-bp神经网络 模型优化 因素分析
在线阅读 下载PDF
基于图神经网络铁路桥梁主梁推荐算法研究
6
作者 柏华军 郑洪 +1 位作者 陈瓴 桂浩 《铁道标准设计》 北大核心 2025年第8期72-79,共8页
随着智能技术的发展,铁路桥跨方案布孔设计一直朝着一体化、数字化、可视化、智能化的方向发展。国内外针对铁路桥梁智能设计的研究主要集中在铁路桥梁模型构造与协同设计方向,关于桥梁智能布孔设计还属于技术空白。在此背景下,研发基... 随着智能技术的发展,铁路桥跨方案布孔设计一直朝着一体化、数字化、可视化、智能化的方向发展。国内外针对铁路桥梁智能设计的研究主要集中在铁路桥梁模型构造与协同设计方向,关于桥梁智能布孔设计还属于技术空白。在此背景下,研发基于图神经网络AGOAM模型的铁路桥梁主梁推荐算法,实现桥跨范围控制点的主梁选型,为桥跨方案智能决策算法提供支撑。深入研究前沿智能推荐技术,提出由预处理层、子图构建层、节点匹配层、图池化层和图匹配层组成的AGOAM模型,基于控制点-梁型的内外部属性交互技术和融合注意力机制的本体特征加强技术,实现控制点和梁型图谱嵌入表示优化和基于相识度算法控制点与梁型高效匹配。模型在验证集AUC、LogLoss、Precision、NDCG指标表明,算法准确度、排序能力和推荐质量效果良好。 展开更多
关键词 铁路桥梁 布孔设计 神经网络 智能设计 注意力机制 推荐算法 相识度算法
在线阅读 下载PDF
基于遗传算法BP神经网络的猫粮糊化特性研究
7
作者 张琦 许耀辉 +6 位作者 陈阳 韩栋梁 张润哲 严骅彬 Lela Susilawati 魏文广 奚小波 《中国饲料》 北大核心 2025年第9期87-92,共6页
为了解猫粮的糊化特性,本试验采用快速黏度分析仪(RVA)对不同RVA转子转速(160、200、240、280、320、360、400、440、480 r/min),不同保持温度(75、80、85、90、95℃),不同质量猫粮和蒸馏水比值(1/21、2/21、3/21、4/21、5/21、6/21、7/... 为了解猫粮的糊化特性,本试验采用快速黏度分析仪(RVA)对不同RVA转子转速(160、200、240、280、320、360、400、440、480 r/min),不同保持温度(75、80、85、90、95℃),不同质量猫粮和蒸馏水比值(1/21、2/21、3/21、4/21、5/21、6/21、7/21)进行研究。结果表明:随着转子转速的增加,峰值黏度、谷值黏度、终值黏度显著降低,衰减值变小,热糊稳定性增强。随着保持温度的增加,峰值黏度增加,谷值黏度和终值黏度先上升后下降,淀粉糊稳定性变差,原料更容易糊化。随着猫粮质量的增加,糊化温度降低,峰值黏度、谷值黏度、终值黏度增大,淀粉糊稳定性降低,凝胶性增强。另外,以本试验数据为基础,提出一种基于遗传算法的神经网络预测峰值黏度的模型。 展开更多
关键词 转速 温度 淀粉 糊化特性 神经网络 遗传算法 快速黏度分析仪(RVA)
在线阅读 下载PDF
基于改进灰狼算法优化BP神经网络的RSS指纹定位
8
作者 刘伟 李艾龙 +1 位作者 李卓 王智豪 《电子测量技术》 北大核心 2025年第14期162-175,共14页
室内定位技术,特别是基于接收信号强度(RSSI)的指纹定位方法,因其成本低廉、设备支持广泛、易于部署、计算开销小等特点,受到了广泛关注。为了增强RSSI与实际物理距离之间的映射关系并提高测距精度,本文提出了一种基于改进灰狼优化(IGWO... 室内定位技术,特别是基于接收信号强度(RSSI)的指纹定位方法,因其成本低廉、设备支持广泛、易于部署、计算开销小等特点,受到了广泛关注。为了增强RSSI与实际物理距离之间的映射关系并提高测距精度,本文提出了一种基于改进灰狼优化(IGWO)算法与反向传播神经网络(BPNN)结合的RSSI测距算法。与遗传算法(GA)、粒子群算法(PSO)和经典灰狼优化算法(GWO)相比,改进的GWO算法在定位精度和全局搜索能力方面具有显著优势。通过实验,本文提出的IGWO算法在均方根误差RMSE上相比GWO算法、GA算法、PSO算法分别减少了21.3%、15.7%、14.6%,IGWO算法表现出了较好的定位性能,在精度和性能上均优于传统方法。 展开更多
关键词 室内定位 RSSI测距 BP神经网络 灰狼算法 粒子群算法
在线阅读 下载PDF
改进黑翅鸢算法优化神经网络的室内定位
9
作者 杨晶晶 万里宏 +2 位作者 张雪明 麦鴚 雷俊杰 《重庆理工大学学报(自然科学)》 北大核心 2025年第5期229-237,共9页
针对传统无线信号的路径损耗模型(path loss model,PLM)在预测距离值时易受多径效应影响,导致在复杂室内环境中定位精度下降的问题,提出一种基于改进黑翅鸢算法(improved black-winged kite algorithm,IBKA)优化反向传播(back propagati... 针对传统无线信号的路径损耗模型(path loss model,PLM)在预测距离值时易受多径效应影响,导致在复杂室内环境中定位精度下降的问题,提出一种基于改进黑翅鸢算法(improved black-winged kite algorithm,IBKA)优化反向传播(back propagation,BP)神经网络的室内定位算法。分别引入Tent混沌映射、透镜成像反向学习策略和黄金正弦策略优化黑翅鸢算法,通过基准测试函数测试证实了IBKA拥有更好的性能,通过IBKA优化神经网络算法的初始权值和阈值建立IBKA-BP神经网络测距模型。在实验室内采集RSSI信号样本数据进行分析,结果表明所提IBKA-BP优化算法均方根误差为21.42 cm,小于PLM、GWO-BP、BKA-BP和ISSA-BP的63.25、47.04、33.77、28.78 cm,且收敛速度更快,在复杂室内环境下定位性能更好。 展开更多
关键词 改进黑翅鸢算法 BP神经网络 RSSI测距算法 路径损耗模型
在线阅读 下载PDF
利用非支配排序遗传算法优化卷积神经网络研究节点地震仪RFID测距
10
作者 庞聪 林春晓 +3 位作者 李忠亚 江勇 陈国庆 宋莹莹 《大地测量与地球动力学》 北大核心 2025年第10期1079-1084,共6页
针对无线型节点地震仪在野外复杂勘探环境下无法准确定位和可能丢失的问题,研究超高频RFID高精度测距定位具有重要意义。首先利用接收信号强度指示器(RSSI)近似计算公式筛除误差较大的采样值;然后设计第3代非支配排序遗传算法(NSGA-Ⅲ)... 针对无线型节点地震仪在野外复杂勘探环境下无法准确定位和可能丢失的问题,研究超高频RFID高精度测距定位具有重要意义。首先利用接收信号强度指示器(RSSI)近似计算公式筛除误差较大的采样值;然后设计第3代非支配排序遗传算法(NSGA-Ⅲ)的2个优化目标函数,其自变量统一为学习率下降因子、初始学习率、批大小等一维卷积神经网络(1D-CNN)超参数,因变量分别为网络预测结果与理论值的决定系数(R^(2))和平均偏差误差(MBE);最后以最佳超参数值构成NSGAⅢ-1D-CNN新模型,以提高RFID测距模型的稳定性和精确度。实验结果表明,新模型在100轮循环实验下的节点地震仪RFID测距误差较小,在R^(2)、均方根误差(RMSE)、平均绝对误差(MAE)、MBE等多个指标上均表现优异,均值分别为0.9779、0.0586 m、0.0472 m、-0.0013 m,相对于其他模型具有更高的测距定位精度,在野外物探中具有一定应用价值。 展开更多
关键词 节点地震仪 RFID测距 一维卷积神经网络 超参数优化 非支配排序遗传算法 多目标优化
在线阅读 下载PDF
基于嵌套优化的GA-PSO-BP神经网络短期风功率预测方法研究 被引量:2
11
作者 刘翘楚 王杰 +3 位作者 秦文萍 张文博 陈玉梅 刘佳昕 《电网与清洁能源》 北大核心 2025年第2期138-146,共9页
短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提... 短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提出嵌套优化的GA-PSO-BP神经网络短期风电功率预测模型。建立内外双层嵌套的优化机制,内层机制中引入GA算法优化PSO算法学习因子,优化后PSO算法作为外层机制实现BP神经网络阈值和权值的优化。模拟风电数据预测结果表明,比起GA-BP、PSO-BP、长短期记忆网络(long short-term memory,LSTM)预测模型,所提嵌套优化模型在平均绝对误差(mean absolute error,MAE)、均方根误差(root mean squared error,RMSE)、决定系数R2 3个评价维度上均取得了最优值;利用山西某风电场不同月份、不同时段、不同波动特征的实际运行数据进行验证,预测结果表明MAE均小于0.02,R2均大于0.99,所提嵌套优化模型具有较高的预测精度和拟合程度。 展开更多
关键词 风电功率预测 BP神经网络 遗传算法 粒子群算法 嵌套优化
在线阅读 下载PDF
神经网络加速PSO算法的超材料吸波体设计 被引量:1
12
作者 戴书浩 孙俊 +2 位作者 彭艺 罗会龙 张莉 《传感器与微系统》 北大核心 2025年第2期90-94,共5页
在超材料吸波体的设计过程中,研究人员常采用耗时长的全波仿真方法,设计思路主要以耗时长的参数扫描和经验设计为主。为了减少设计耗时,本文提出了一种基于神经网络加速粒子群优化(PSO)算法的快速设计方法。该方法利用神经网络对超材料... 在超材料吸波体的设计过程中,研究人员常采用耗时长的全波仿真方法,设计思路主要以耗时长的参数扫描和经验设计为主。为了减少设计耗时,本文提出了一种基于神经网络加速粒子群优化(PSO)算法的快速设计方法。该方法利用神经网络对超材料吸波体的电磁参数进行准确地预测,其预测结果与仿真结果均方误差(MSE)不超过0.0011。在PSO算法对结构参数空间进行搜索的过程中,预测结果被用于算法优化过程中的适应度计算,PSO算法能够根据不同的适应度值自动调节结构参数以到达电磁波宽频带吸收的目的。该方法将设计耗时缩短为全波仿真设计耗时的0.3%。通过该方法设计的超材料吸波体在8.5~17.9 GHz频段内的吸波率大于90%,吸波带宽为9.4 GHz。此外该方法优化过程避免了人工干扰,能够移植到超材料的其他应用设计中。 展开更多
关键词 超材料吸波体 神经网络 粒子群优化算法
在线阅读 下载PDF
改进粒子群优化算法结合BP神经网络模型的水体透射光谱总磷浓度预测研究 被引量:1
13
作者 张国浩 王彩玲 +1 位作者 王洪伟 于涛 《光谱学与光谱分析》 北大核心 2025年第2期394-402,共9页
使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总... 使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总磷浓度含量的预测。具体而言,首先对测得的长江水质光谱数据进行最大最小归一化和均值中心化两种预处理操作,在消除不同数据量级差异的同时去除了噪声,确保了数据的一致性和可靠性。其次,为了解决光谱数据的高维度问题,采用了核主成分分析(KPCA)方法来降低数据维度并提取特征。KPCA方法通过在高维度的空间中找到一个分类平面,选出能代表原始数据99.42%信息量的前6个主成分,用于后续预测模型的训练。接着在原始粒子群算法的基础上引入了粒子初始化规则、多种群竞争策略、参数自适应更新策略、种群多样性引导策略和粒子变异机制,提高了粒子群的寻优能力,降低粒子陷入局部最优解的概率。并使用改进后的粒子群算法对BP神经网络(BPNN)中的初始化权重和参数大小进行寻优,从而加快网络的收敛效果,提高预测能力。最后,使用本研究所提出的预测模型对测试集中的样本进行总磷浓度的预测,实验结果得到R^(2)为0.975786,RMSE为0.002242,MAE为0.001612。将本模型与当前预测性能较好的其他基准模型进行预测效果的对比,本研究所提出的模型对长江水体总磷浓度预测拟合效果更好,精确度更高。在水资源保护和环境管理领域中使用光谱数据结合融合算法进行预测模型的研究和实践提供了新的思路和观点。 展开更多
关键词 光谱数据 改进粒子群优化算法 BP神经网络模型 核主成分分析(KPCA) 总磷浓度
在线阅读 下载PDF
基于PSO-BP神经网络的单位注浆量预测 被引量:1
14
作者 陈泓 黄永辉 +1 位作者 张智宇 陈成志 《有色金属(中英文)》 北大核心 2025年第2期288-297,共10页
帷幕注浆作为矿山控制地下水的重要手段之一,对矿山的安全生产十分重要,单位注浆量作为注浆效果的关键评价指标,具有不确定性。基于尖山磷矿帷幕注浆试验段注浆数据,进行单位注浆量影响因素相关性分析,分别构建单位注浆量卷积神经网络(C... 帷幕注浆作为矿山控制地下水的重要手段之一,对矿山的安全生产十分重要,单位注浆量作为注浆效果的关键评价指标,具有不确定性。基于尖山磷矿帷幕注浆试验段注浆数据,进行单位注浆量影响因素相关性分析,分别构建单位注浆量卷积神经网络(CNN)、BP神经网络、遗传算法优化神经网络(GA-BP)和粒子群算法优化神经网络(PSO-BP)预测模型进行预测和准确性分析。结果表明:斯皮尔曼相关系数法和肯德尔相关系数法对单位注浆量影响因素分析结果一致,影响因素相关性由强到弱为:注浆持续时间、水灰比、注前透水率、注浆段长度、注浆压力、钻孔深度;PSO-BP神经网络模型预测效果明显优于另外三种预测模型,R^(2)达到0.94527,RMSE值分别降低80%、56%、49%;MAE值分别降低68.3%、48.6%、23.2%,验证了该模型的优越性。该模型能够更准确地对单位注浆量进行预测,对后续注浆工作的实施具有一定参考,可为帷幕注浆效果评价提供重要的指导建议。 展开更多
关键词 帷幕注浆 单位注浆量 相关性分析 BP神经网络 粒子群优化算法
在线阅读 下载PDF
基于PSO-BP神经网络模型的浸胶竹束干燥过程含水率预测
15
作者 王晓曼 吕建雄 +5 位作者 李贤军 吴义强 李新功 郝晓峰 乔建政 徐康 《林业科学》 北大核心 2025年第5期187-198,共12页
【目的】利用人工神经网络模型预测浸胶竹束干燥过程含水率变化,揭示干燥温度、干燥时间、铺装方式和初始含水率对浸胶竹束干燥过程含水率变化的影响规律,为浸胶竹束高质高效干燥提供参考依据。【方法】基于浸胶竹束干燥过程含水率实测... 【目的】利用人工神经网络模型预测浸胶竹束干燥过程含水率变化,揭示干燥温度、干燥时间、铺装方式和初始含水率对浸胶竹束干燥过程含水率变化的影响规律,为浸胶竹束高质高效干燥提供参考依据。【方法】基于浸胶竹束干燥过程含水率实测数据,以干燥温度、干燥时间、铺装方式和初始含水率为输入变量,干燥过程含水率为输出变量,制作数据集。将数据集划分为训练集(308个测试数据,占总数据量的70%)、验证集(66个测试数据,占总数据量的15%)和测试集(66个测试数据,占总数据量的15%),采用粒子群优化算法(PSO)优化反向传播(BP)神经网络初始权重与阈值,构建PSO-BP神经网络预测模型,并进行验证分析。【结果】PSO-BP神经网络模型具有较强的预测能力,在模型测试集中,决定系数(R^(2))、均方误差(MSE)、平均绝对误差(MAE)和剩余预测残差(RPD)分别达0.98、1.27、3.73和7.96。相较BP神经网络,PSO-BP神经网络的R^(2)和RPD分别提高6.53%和110.2%,MSE和MAE分别降低54.0%和71.86%。模型验证表明,干燥温度和铺装方式是影响浸胶竹束干燥过程含水率变化的主要因素,二者对PSO-BP神经网络模型预测结果影响显著。干燥温度为60℃时,在4种不同铺装方式下PSO-BP神经网络模型展现出较好预测效果,其R^(2)均超过0.969且MSE均低于3;铺装层数为3时,在4种不同干燥温度下PSO-BP神经网络模型表现最佳,其R^(2)均超过0.99且MSE均低于2。干燥时间和浸胶竹束初始含水率对PSO-BP神经网络模型预测结果影响不显著。【结论】PSO-BP神经网络模型在浸胶竹束干燥过程含水率预测中表现出准确性,可有效解决传统BP神经网络预测误差大、收敛速度慢等问题,为浸胶竹束高质高效干燥提供技术支撑。 展开更多
关键词 浸胶竹束 干燥 含水率 粒子群优化算法 反向传播 神经网络
在线阅读 下载PDF
基于Smith预估和遗传算法的低温场神经网络控制
16
作者 朱志祥 王学庆 +2 位作者 李旭 刘海波 王永青 《组合机床与自动化加工技术》 北大核心 2025年第1期190-194,200,共6页
低温度场广泛存在于生物医疗、低温加工等过程中,热传导和传质等导致系统存在滞后特性。针对低温度场调控系统中时滞特性导致的系统超调、振荡等问题,在Smith预估结合PID控制基础上,引入了BP神经网络,实现了控制器增益的自适应调整。针... 低温度场广泛存在于生物医疗、低温加工等过程中,热传导和传质等导致系统存在滞后特性。针对低温度场调控系统中时滞特性导致的系统超调、振荡等问题,在Smith预估结合PID控制基础上,引入了BP神经网络,实现了控制器增益的自适应调整。针对传统神经网络学习算法增益调整速度慢、结果不稳定等问题,在充分考虑系统的动态模型下,提出了基于遗传算法的神经网络权值优化方法,实现了控制器增益的快速稳定调整。系统仿真结果表明,较PID-Smith控制、NNPID-Smith控制等,在低温度场时滞系统调控中超调较小,调整时间短,有效改善了低温度场调控过程中的系统稳定性。 展开更多
关键词 低温度场 时滞系统 Smith预估 神经网络 遗传算法
在线阅读 下载PDF
基于神经网络和遗传算法的宽带激光熔覆层形貌尺寸预测
17
作者 倪崇智 路妍 +4 位作者 颉潭成 王军华 徐彦伟 史墨可 翟文豪 《热加工工艺》 北大核心 2025年第10期78-83,共6页
针对宽带激光熔覆层形貌尺寸所受影响因素较多且难以控制的问题,将激光功率、扫描速度和送粉速率作为输入,以熔覆层宽度和高度作为输出,构建了BP神经网络宽带激光熔覆层形貌尺寸预测模型,分析了其预测精度,并使用遗传算法对所建BP神经... 针对宽带激光熔覆层形貌尺寸所受影响因素较多且难以控制的问题,将激光功率、扫描速度和送粉速率作为输入,以熔覆层宽度和高度作为输出,构建了BP神经网络宽带激光熔覆层形貌尺寸预测模型,分析了其预测精度,并使用遗传算法对所建BP神经网络预测模型的权值和阈值进行了优化。结果表明,BP神经网络预测熔覆层形貌尺寸的相对误差均在7.434%以内,GA-BP神经网络模型预测熔覆层形貌尺寸的相对误差均在5.348%以内。GA-BP神经网络模型在预测宽带激光熔覆层形貌尺寸方面精度较高,能有效指导宽带激光熔覆工艺参数的选择。 展开更多
关键词 宽带激光熔覆层 工艺参数 BP神经网络 遗传算法
在线阅读 下载PDF
基于BP神经网络和遗传算法的铜-铝双层药型罩结构优化设计
18
作者 李伟芾 高绪杰 +2 位作者 常征 朱立华 朱光明 《兵器装备工程学报》 北大核心 2025年第8期89-95,共7页
为得到具备最优侵彻性能的铜-铝双层药型罩结构参数,基于有限元仿真结果训练神经网络,并结合遗传算法对最佳结构参数进行了优化设计,以获得最大侵彻深度。首先通过正交试验设计结合LS-DYNA软件进行数值模拟,得到样本数据及各因素显著性... 为得到具备最优侵彻性能的铜-铝双层药型罩结构参数,基于有限元仿真结果训练神经网络,并结合遗传算法对最佳结构参数进行了优化设计,以获得最大侵彻深度。首先通过正交试验设计结合LS-DYNA软件进行数值模拟,得到样本数据及各因素显著性。同时,构建了BP人工神经网络模型,并将预测值作为适应度,使用遗传算法以侵彻深度为优化目标得到对应的最佳结构参数。研究结果表明:当药型罩锥角为59.07°,壁厚为1.66 mm,长径比为1.36,Cu/Al壁厚比为2.38∶1时,形成的射流侵彻深度相较正交试验优化结果更好。 展开更多
关键词 双层药型罩 BP神经网络 遗传算法 结构优化 数值模拟
在线阅读 下载PDF
基于PSO-BP神经网络的角接触球轴承凸出量预测
19
作者 章如意 段玥晨 +1 位作者 张瑞 赵明辉 《传感器与微系统》 北大核心 2025年第9期134-137,143,共5页
针对人工测量角接触球轴承的凸出量,对轴承进行配对效率较低的问题,提出了基于粒子群优化(PSO)—反向传播(BP)神经网络的角接触球轴承凸出量预测方法。根据200组实验数据,通过灰色关联度分析,选取了角接触球轴承内外圈的宽度、沟位、沟... 针对人工测量角接触球轴承的凸出量,对轴承进行配对效率较低的问题,提出了基于粒子群优化(PSO)—反向传播(BP)神经网络的角接触球轴承凸出量预测方法。根据200组实验数据,通过灰色关联度分析,选取了角接触球轴承内外圈的宽度、沟位、沟径和沟道曲率半径作为建模数据集,分别利用BP神经网络、遗传算法(GA)—BP神经网络、PSO-BP神经网络建立角接触球轴承凸出量预测模型。结果表明:PSO-BP神经网络预测模型预测效果最好,决定系数(R^(2))达0.986 3,整体误差≤±0.70%,能够较为准确地预测角接触球轴承的凸出量,提高轴承的配对效率。 展开更多
关键词 角接触球轴承 凸出量 灰色关联度分析 反向传播神经网络 遗传算法 粒子群优化算法
在线阅读 下载PDF
基于萤火虫算法优化BP神经网络的核电厂故障参数预测
20
作者 刘涛 谢金森 +4 位作者 邓年彪 陈鹏宇 吴智强 张二品 于涛 《核科学与工程》 北大核心 2025年第1期120-130,共11页
随着核电厂向数字化和智能化转型,利用神经网络对瞬态参数进行预测,辅助操作人员处理事故成为可能。针对基于梯度下降的BP神经网络在预测核电厂瞬态参数时可能陷入局部最优的问题,提出了一种结合萤火虫算法(Firefly Algorithm,FA)优化... 随着核电厂向数字化和智能化转型,利用神经网络对瞬态参数进行预测,辅助操作人员处理事故成为可能。针对基于梯度下降的BP神经网络在预测核电厂瞬态参数时可能陷入局部最优的问题,提出了一种结合萤火虫算法(Firefly Algorithm,FA)优化的BP神经网络(FA-BP神经网络)。使用PCTRAN仿真软件生成的数据,比较了FA-BP神经网络与传统BP网络在预测性能上的差异,并应用FA-BP神经网络进行故障诊断。研究结果表明,FA-BP神经网络在训练效率和预测精度方面均显著优于传统BP网络,并在故障诊断中展现出高准确率。实验表明FA-BP模型能够支持核电厂操作人员在事故中更有效地管理机组状态,增强核电安全性。 展开更多
关键词 核电厂 瞬态参数预测 萤火虫算法 BP神经网络
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部