为解决挖拔式木薯智能收获机械在作业过程需要快速准确地确定茎秆位置的问题,基于YOLO(You only look once)卷积神经网络提出一种检测速率更快且满足准确率的网络设计(CS-YOLO)。首先,采集并扩增木薯茎秆图像数据集,对样本集进行标注与...为解决挖拔式木薯智能收获机械在作业过程需要快速准确地确定茎秆位置的问题,基于YOLO(You only look once)卷积神经网络提出一种检测速率更快且满足准确率的网络设计(CS-YOLO)。首先,采集并扩增木薯茎秆图像数据集,对样本集进行标注与划分;然后,改进YOLOv1网络结构,利用全局平均池化替代全连接层,并适当调整网络深度和宽度,设计了一种新的网络;最后,对网络进行检测性能试验和对比分析。结果表明:新网络模型尺寸较原网络大小减少约一半,平均每张图像的检测耗时约0.015s,检测速度显著提升;当测试阶段IOU(Intersection Over Union)阈值为0.1时,模型准确率达到了99%,提出的检测方法可满足木薯收获机精准作业要求。研究可为实时、准确地检测田间木薯茎秆位置提供了一种新的思路和方法,也为仿生挖拔式木薯收获机提供了技术支撑。展开更多
Under complex flight conditions,such as obstacle avoidance and extreme sea state,wing-in-ground(WIG)effect aircraft need to ascend to higher altitudes,resulting in the disappearance of the ground effect.A design of hi...Under complex flight conditions,such as obstacle avoidance and extreme sea state,wing-in-ground(WIG)effect aircraft need to ascend to higher altitudes,resulting in the disappearance of the ground effect.A design of high-speed WIG airfoil considering non-ground effect is carried out by a novel two-step inverse airfoil design method that combines conditional generative adversarial network(CGAN)and artificial neural network(ANN).The CGAN model is employed to generate a variety of airfoil designs that satisfy the desired lift-drag ratios in both ground effect and non-ground effect conditions.Subsequently,the ANN model is utilized to forecast aerodynamic parameters of the generated airfoils.The results indicate that the CGAN model contributes to a high accuracy rate for airfoil design and enables the creation of novel airfoil designs.Furthermore,it demonstrates high accuracy in predicting aerodynamic parameters of these airfoils due to the ANN model.This method eliminates the necessity for numerical simulations and experimental testing through the design procedure,showcasing notable efficiency.The analysis of airfoils generated by the CGAN model shows that airfoils exhibiting high lift-drag ratios under both flight conditions typically have cambers of among[0.08c,0.105c],with the positions of maximum camber occurring among[0.35c,0.5c]of the chord length,and the leading-edge radiuses of these airfoils primarily cluster among[0.008c,0.025c]展开更多
In the paper, an artificial neural network (ANN) method is put forward to optimize melting temperature control, which reveals the nonlinear relationships of tank melting temperature disturbances with secondary wind fl...In the paper, an artificial neural network (ANN) method is put forward to optimize melting temperature control, which reveals the nonlinear relationships of tank melting temperature disturbances with secondary wind flow and fuel pressure, implements dynamic feed-forward complementation and dynamic correctional ratio between air and fuel in the main control system. The application to Anhui Fuyang Glass Factory improved the control character of the melting temperature greatly.展开更多
One of the most serious conundrum facing the stope production in underground metalliferous mining is uneven break (UB: unplanned dilution and ore-loss). Although the UB has a huge economic fallout to the entire min...One of the most serious conundrum facing the stope production in underground metalliferous mining is uneven break (UB: unplanned dilution and ore-loss). Although the UB has a huge economic fallout to the entire mining process, it is practically unavoidable due to the complex causing mechanism. In this study, the contribution of ten major UB causative parameters ha,; been scrutinised based on a published UB predicting artificial neuron network (ANN) model to put UB under the engineering management. Two typical ANN sensitivity analysis methods, i.e., connection weight algorithm (CWA) and profile method (PM) have been applied. As a result of CWA and PM applications, adjusted Qrate (AQ) revealed as the most influential parameter to UB with contribution of 22,40% in CWA and 20,48% in PM respectively. The findings of this study can be used as an important reference in stope design, production, and reconciliation stages on underground stoping mine.展开更多
文摘为解决挖拔式木薯智能收获机械在作业过程需要快速准确地确定茎秆位置的问题,基于YOLO(You only look once)卷积神经网络提出一种检测速率更快且满足准确率的网络设计(CS-YOLO)。首先,采集并扩增木薯茎秆图像数据集,对样本集进行标注与划分;然后,改进YOLOv1网络结构,利用全局平均池化替代全连接层,并适当调整网络深度和宽度,设计了一种新的网络;最后,对网络进行检测性能试验和对比分析。结果表明:新网络模型尺寸较原网络大小减少约一半,平均每张图像的检测耗时约0.015s,检测速度显著提升;当测试阶段IOU(Intersection Over Union)阈值为0.1时,模型准确率达到了99%,提出的检测方法可满足木薯收获机精准作业要求。研究可为实时、准确地检测田间木薯茎秆位置提供了一种新的思路和方法,也为仿生挖拔式木薯收获机提供了技术支撑。
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Fundamental Research Funds for the Central Universities(No.ILA220101A23)CARDC Fundamental and Frontier Technology Research Fund(No.PJD20200210)the Aeronautical Science Foundation of China(No.20200023052002).
文摘Under complex flight conditions,such as obstacle avoidance and extreme sea state,wing-in-ground(WIG)effect aircraft need to ascend to higher altitudes,resulting in the disappearance of the ground effect.A design of high-speed WIG airfoil considering non-ground effect is carried out by a novel two-step inverse airfoil design method that combines conditional generative adversarial network(CGAN)and artificial neural network(ANN).The CGAN model is employed to generate a variety of airfoil designs that satisfy the desired lift-drag ratios in both ground effect and non-ground effect conditions.Subsequently,the ANN model is utilized to forecast aerodynamic parameters of the generated airfoils.The results indicate that the CGAN model contributes to a high accuracy rate for airfoil design and enables the creation of novel airfoil designs.Furthermore,it demonstrates high accuracy in predicting aerodynamic parameters of these airfoils due to the ANN model.This method eliminates the necessity for numerical simulations and experimental testing through the design procedure,showcasing notable efficiency.The analysis of airfoils generated by the CGAN model shows that airfoils exhibiting high lift-drag ratios under both flight conditions typically have cambers of among[0.08c,0.105c],with the positions of maximum camber occurring among[0.35c,0.5c]of the chord length,and the leading-edge radiuses of these airfoils primarily cluster among[0.008c,0.025c]
文摘In the paper, an artificial neural network (ANN) method is put forward to optimize melting temperature control, which reveals the nonlinear relationships of tank melting temperature disturbances with secondary wind flow and fuel pressure, implements dynamic feed-forward complementation and dynamic correctional ratio between air and fuel in the main control system. The application to Anhui Fuyang Glass Factory improved the control character of the melting temperature greatly.
文摘One of the most serious conundrum facing the stope production in underground metalliferous mining is uneven break (UB: unplanned dilution and ore-loss). Although the UB has a huge economic fallout to the entire mining process, it is practically unavoidable due to the complex causing mechanism. In this study, the contribution of ten major UB causative parameters ha,; been scrutinised based on a published UB predicting artificial neuron network (ANN) model to put UB under the engineering management. Two typical ANN sensitivity analysis methods, i.e., connection weight algorithm (CWA) and profile method (PM) have been applied. As a result of CWA and PM applications, adjusted Qrate (AQ) revealed as the most influential parameter to UB with contribution of 22,40% in CWA and 20,48% in PM respectively. The findings of this study can be used as an important reference in stope design, production, and reconciliation stages on underground stoping mine.