期刊文献+
共找到252篇文章
< 1 2 13 >
每页显示 20 50 100
基于改进卷积神经网络的新能源并网短路电流预测技术
1
作者 于琳琳 蒋小亮 +2 位作者 贾鹏 孟高军 丁咚 《可再生能源》 北大核心 2025年第3期408-415,共8页
随着新能源的大规模并网,大电网短路电流特征更加复杂、难以预测。基于此,文章提出了一种基于改进卷积神经网络的新能源并网短路电流预测技术。首先,分析短路电流特点,对短路电流进行变分模态分解,得到本征模态函数;其次,对卷积神经网... 随着新能源的大规模并网,大电网短路电流特征更加复杂、难以预测。基于此,文章提出了一种基于改进卷积神经网络的新能源并网短路电流预测技术。首先,分析短路电流特点,对短路电流进行变分模态分解,得到本征模态函数;其次,对卷积神经网络进行改进,利用多尺度特征提取将电流故障数据特征最大化,引入注意力机制提取重要信息,卷积过程中使用跳跃连接的方式防止前向传递时信息丢失,有利于提高预测的准确性,构建基于改进卷积神经网络的短路电流预测模型;最后,经过PSCAD/EMTDC电网模型进行验证。结果表明,所提方法对短路电流峰值预测有着较高的精度,与常见的极限学习机、支持向量机相比,平均相对误差分别降低了0.61%,1.09%,验证了文章所提方法的有效性。 展开更多
关键词 新能源 改进卷积神经网络 短路电流预测 变分模态分解 注意力机制
在线阅读 下载PDF
基于拉曼光谱的变压器混合故障特征气体的改进卷积神经网络定量方法
2
作者 陈新岗 张文轩 +4 位作者 马志鹏 张知先 万福 敖怡 曾慧敏 《光谱学与光谱分析》 北大核心 2025年第4期932-940,共9页
激光拉曼光谱技术在变压器故障特征气体检测方面具有明显优势,随变压器状态监测智能化的发展,研究混合故障特征气体的快速、准确定量分析方法具有重要意义。传统拉曼光谱分析需要预处理过程,极大程度依赖人为经验,光谱特征提取虽可降低... 激光拉曼光谱技术在变压器故障特征气体检测方面具有明显优势,随变压器状态监测智能化的发展,研究混合故障特征气体的快速、准确定量分析方法具有重要意义。传统拉曼光谱分析需要预处理过程,极大程度依赖人为经验,光谱特征提取虽可降低信号维度,但也会造成其特征部分缺失或改变。针对上述问题,提出基于改进一维卷积神经网络与最小二乘支持向量回归相融合的拉曼光谱定量分析方法,即引入全局均值池化与最小二乘支持向量回归改进传统卷积神经网络,并运用Dropout方法提高模型泛化性能,防止过拟合。设计并搭建变压器故障特征气体拉曼光谱检测平台,采集7种故障特征气体及N_(2)、O_(2)混合气体的拉曼信号,在谱图2900 cm^(-1)频移附近,CH_(4)、C_(2)H_(6)气体呈现谱峰重叠,且变压器过热或局部放电故障发生时,会产生主要故障特征气体CH_(4),选择不同含量比例下的CH_(4)、C_(2)H_(6)混合气体作为研究对象具有代表性,按不同比例配制146组不同含量的CH_(4)、C_(2)H_(6)混合气体样本,检测时选用氮气作为标气,采集不同含量比例下混合气体样本的拉曼光谱数据,利用光谱数据增强方法,构建适用于深度神经网络的气体样本数据集。通过不断实验,优化网络结构参数与网络权重,完成模型训练并测试其预测效果,与多种定量模型进行对比分析,并研究光谱预处理对不同定量模型的影响,进而评估模型性能。结果表明,使用原始数据集建模时,改进卷积神经网络模型的预测精确度与回归拟合优度最佳,决定系数可达0.9998,均方根误差仅为0.0005 MPa;使用预处理后数据集建模时,改进卷积神经网络模型均方根误差为0.0023 MPa,相比使用原始数据集建模误差上升了0.0018,而传统方法误差均有所下降。该研究结果表明,所提方法与传统拉曼光谱定量方法相比,集成光谱预处理、特征提取和定量分析过程,在确保预测精确度的基础上,简化光谱分析流程,为快速、准确分析变压器混合故障特征气体提供了新的思路与参考。 展开更多
关键词 变压器 特征气体 拉曼光谱 改进一维卷积神经网络 定量分析
在线阅读 下载PDF
基于改进GA-BP神经网络的双感应电机控制同步
3
作者 王菁菁 吴嘉轩 潘成 《组合机床与自动化加工技术》 北大核心 2025年第7期95-100,105,共7页
针对矿料筛分中使用的同频振动筛,当振动机体的运动轨迹接近于椭圆时筛分效率最优异,这就要求两台感应电机实现同频零相位差控制同步,所以对双感应电机控制同步进行了研究。通过引入遗传算法(genetic algorithm,GA)来优化BP神经网络初... 针对矿料筛分中使用的同频振动筛,当振动机体的运动轨迹接近于椭圆时筛分效率最优异,这就要求两台感应电机实现同频零相位差控制同步,所以对双感应电机控制同步进行了研究。通过引入遗传算法(genetic algorithm,GA)来优化BP神经网络初始连接权值和阈值的选择,增加惯性因子改进输出层和隐含层中的连接权重加速BP神经网络收敛,从而设计出了相位控制器。最后从仿真结果可以看出,在振动自同步中,电机1和电机2之间的零相位差无法实现,而采用基于改进GA-BP神经网络pid控制方法,在控制同步中可以实现上述结果。对比控制方法,设计的GA-BP pid控制方法明显优于其他方法,为工业生产中同频振动筛的应用提供了新的思路和参考。 展开更多
关键词 振动筛 感应电机 控制同步 改进GA-BP神经网络 零相位差
在线阅读 下载PDF
基于改进PCA-BP神经网络模型的海宁市需水预测 被引量:3
4
作者 杨登元 鞠茂森 唐德善 《水电能源科学》 北大核心 2024年第5期68-71,79,共5页
需水预测是地区水资源规划中的重要部分,对于实现水资源合理有序开发,保障社会经济的可持续发展有重要的指导意义。采用改进PCA-BP神经网络模型对影响需水量的9个影响因子进行降维处理,并分别以海宁市2001~2014、2015~2020年数据作为训... 需水预测是地区水资源规划中的重要部分,对于实现水资源合理有序开发,保障社会经济的可持续发展有重要的指导意义。采用改进PCA-BP神经网络模型对影响需水量的9个影响因子进行降维处理,并分别以海宁市2001~2014、2015~2020年数据作为训练样本和检验样本完成模型训练,其中,综合灰色预测模型GM(1,1)对降维后的影响因子独立预测,从而预测海宁市规划年需水量,并与传统定额法的需水预测结果进行对比分析。结果表明,人口、GDP、居民生活用水量、城镇公共用水量为影响海宁市需水量的主要因子;通过构建改进PCA-BP神经网络模型得到的2025、2030、2035年需水结果,比传统定额法更为真实、合理,进一步证实了预测模型的合理性,可为海宁市未来水资源规划提供指导。 展开更多
关键词 需水预测 主成分分析法 改进PCA-BP神经网络 灰色预测模型
在线阅读 下载PDF
足式机器人腿部关节改进单神经网络PID控制算法研究 被引量:4
5
作者 马程 蒋刚 +5 位作者 郝兴安 蒲虹云 陈清平 黄建军 徐文刚 黄璜 《机床与液压》 北大核心 2024年第3期60-66,共7页
为了满足液压足式机器人在复杂环境中实现精确、快速的腿部关节控制需求,把单神经网络PID能够实时调节参数的优点运用到足式机器人液压机械腿关节的控制中,在单神经网络PID的基础上增加机械腿关节的位置和速度控制算法,形成改进单神经网... 为了满足液压足式机器人在复杂环境中实现精确、快速的腿部关节控制需求,把单神经网络PID能够实时调节参数的优点运用到足式机器人液压机械腿关节的控制中,在单神经网络PID的基础上增加机械腿关节的位置和速度控制算法,形成改进单神经网络PID,实现了对神经元比例参数自调整、PID参数的自整定,能够较好地适应内、外参数的变化,增强了腿部关节的快速性、精确性。在Simulink中进行建模仿真以及在设计的以STM32为中央处理芯片的控制平台上进行实验测试,结果表明:改进单神经网络PID在足式液压机器人的腿部关节控制中具有响应速度快、超调量小、控制精度高、鲁棒性强等优点。 展开更多
关键词 电液伺服控制 足式机器人 改进神经网络PID 参数自整定
在线阅读 下载PDF
基于改进神经网络的船舶航行速度估计数学模型
6
作者 姚光文 《舰船科学技术》 北大核心 2024年第4期70-73,共4页
船舶航行速度直接影响船舶航行安全与路径规划效果,为此建立基于改进神经网络的船舶航行速度估计数学模型,提升船舶航行速度估计效果。利用位置编码机制,编码处理风速与波高等船舶航向速度相关数据;在编解码卷积神经网络内,引入自注意... 船舶航行速度直接影响船舶航行安全与路径规划效果,为此建立基于改进神经网络的船舶航行速度估计数学模型,提升船舶航行速度估计效果。利用位置编码机制,编码处理风速与波高等船舶航向速度相关数据;在编解码卷积神经网络内,引入自注意力机制,得到改进编解码卷积神经网络;利用编码后的船舶航速训练数据,训练改进神经网络,建立船舶航行速度估计数学模型;在该模型内,输入编码后的船舶航速测试数据,通过自注意力机制,提取船舶航速数据特征,并结合自注意力蒸馏剔除冗余特征;通过全连接层处理船舶航速数据特征,输出船舶航行速度估计结果。实验证明,该模型可有效提取船舶航速数据特征;该模型可精准估计船舶航行速度;在不同浪向下,该模型船舶航行速度估计的决定系数均较高,即估计精度较高。 展开更多
关键词 改进神经网络 船舶航行 速度估计 数学模型 位置编码 自注意力机制
在线阅读 下载PDF
基于改进SSA-BP神经网络的钠硫电池拆解刀具温度预测模型研究 被引量:1
7
作者 屈朝阳 胡光忠 +1 位作者 王平 薛祥东 《机床与液压》 北大核心 2024年第9期100-107,127,共9页
钠硫电池中含有大量的高纯度钠,在自动化拆解过程中存在燃烧、爆炸等安全风险。针对钠硫电池在车削拆解时存在的安全性问题,提出一种改进SSA-BP神经网络算法来预测刀具加工的最高温度。利用ABAQUS软件计算出刀具加工的实时温度,通过电... 钠硫电池中含有大量的高纯度钠,在自动化拆解过程中存在燃烧、爆炸等安全风险。针对钠硫电池在车削拆解时存在的安全性问题,提出一种改进SSA-BP神经网络算法来预测刀具加工的最高温度。利用ABAQUS软件计算出刀具加工的实时温度,通过电池拆解实验验证仿真数据的可靠性;然后以仿真温度数据建立样本,利用Tent混沌映射对SSA-BP神经网络算法进行优化,建立刀具温度仿真预测模型。实验结果表明:该仿真预测模型收敛速度快,鲁棒性强,模型误差小。 展开更多
关键词 钠硫电池 刀具温度预测模型 改进SSA-BP神经网络 Tent混沌映射
在线阅读 下载PDF
多特征融合和改进神经网络的运动视频镜头转换检测 被引量:3
8
作者 温宇 《现代电子技术》 2021年第1期74-77,共4页
针对当前单一特征无法描述体育视频镜头转换信息,以及传统神经网络收敛速度慢等缺陷,为了提高体育视频镜头转换检测正确率,设计了一种多特征融合和改进神经网络的体育视频镜头转换检测方法。首先,采集体育视频镜头转换数据并提取多特征... 针对当前单一特征无法描述体育视频镜头转换信息,以及传统神经网络收敛速度慢等缺陷,为了提高体育视频镜头转换检测正确率,设计了一种多特征融合和改进神经网络的体育视频镜头转换检测方法。首先,采集体育视频镜头转换数据并提取多特征向量,以更加完整反映体育视频镜头转换信息;然后,针对BP神经网络的连接权值确定缺陷,对神经网络进行改进,建立更优的体育视频镜头转换检测模型;最后,采用具体体育视频镜头转换检测仿真实验对文中设计方法进行验证性测试,该方法的体育视频镜头转换检测正确率超过95%,误检率远远低于其他体育视频镜头转换检测方法。 展开更多
关键词 体育视频 镜头转换 特征融合 神经网络改进 检测模型 仿真实验
在线阅读 下载PDF
改进BP神经网络在地下水环境质量评价中的应用 被引量:34
9
作者 曹剑峰 平建华 +3 位作者 SUMARE Oumar 姜纪沂 沈媛媛 钦丽娟 《水利水电科技进展》 CSCD 北大核心 2006年第3期21-23,共3页
以LM算法和步长自适应法对BP神经网络进行改进,并将输入数据采用压缩系数法进行处理, 用改进后的BP神经网络对黄河流域某地区地下水环境质量进行评价,并和内梅罗指数法、灰色聚类法评价结果相比较,结果表明改进后的BP神经网络计算速度... 以LM算法和步长自适应法对BP神经网络进行改进,并将输入数据采用压缩系数法进行处理, 用改进后的BP神经网络对黄河流域某地区地下水环境质量进行评价,并和内梅罗指数法、灰色聚类法评价结果相比较,结果表明改进后的BP神经网络计算速度快、评价精度高、结果客观准确。 展开更多
关键词 改进BP神经网络 地下水 环境质量评价
在线阅读 下载PDF
基于粒子群算法与改进BP神经网络的水电机组轴心轨迹识别 被引量:28
10
作者 郭鹏程 罗兴锜 +2 位作者 王勇劲 白亮 李辉 《中国电机工程学报》 EI CSCD 北大核心 2011年第8期93-97,共5页
在水电机组状态检修系统中,轴心轨迹是判断机组状态的一个重要特征。该文提出边缘检测和矩特征提取相结合的方法,利用粒子群寻优算法来获取与待识别样本最接近的已知样本,应用改进的BP神经网络进行识别,将轴心轴迹的不变性矩作为神经网... 在水电机组状态检修系统中,轴心轨迹是判断机组状态的一个重要特征。该文提出边缘检测和矩特征提取相结合的方法,利用粒子群寻优算法来获取与待识别样本最接近的已知样本,应用改进的BP神经网络进行识别,将轴心轴迹的不变性矩作为神经网络的特征参数,对几种典型的轴心轨迹进行了辨识。某水电站机组试验表明该方法识别速度快、精度高,具有较高的实用价值。 展开更多
关键词 水电机组 轴心轨迹 边缘矩 粒子群寻优算法 改进BP神经网络
在线阅读 下载PDF
基于GRA-GA-BP神经网络的家居服面料透气性能预测 被引量:1
11
作者 王彬霞 王春红 +3 位作者 陈雅颂 周金香 殷兰君 杨道鹏 《丝绸》 CAS CSCD 北大核心 2024年第10期46-52,共7页
本文构建了一种改进BP神经网络模型来预测家居服面料的透气性能,能为家居服设计提供重要的参考。首先,采用灰色关联分析法(Grey Relation Analysis,GRA),选择与透气率关联度较大的因素作为研究对象。其次,采用遗传算法(GA)优化BP神经网... 本文构建了一种改进BP神经网络模型来预测家居服面料的透气性能,能为家居服设计提供重要的参考。首先,采用灰色关联分析法(Grey Relation Analysis,GRA),选择与透气率关联度较大的因素作为研究对象。其次,采用遗传算法(GA)优化BP神经网络的结构参数,构建基于灰色关联分析的遗传算法优化BP(GRA-GA-BP)神经网络预测模型。选取58种面料成分不同、织物组织各异的家居服面料,其中42种为模型训练样本,16种为测试样本对建立的模型进行验证。实验结果表明,透气率实测值与预测值平均相对误差为8.39%;对透气率实测值与预测值进行相关性分析,拟合优度R^(2)为0.976。研究表明,该预测模型预测效果良好、预测精度高,在一定程度上可以精准预测家居服面料的透气率。 展开更多
关键词 织物 家居服 灰色关联分析 改进BP神经网络 透气性预测
在线阅读 下载PDF
基于改进型BP神经网络的氢原子钟钟差预测 被引量:18
12
作者 朱江淼 宋文峰 +1 位作者 高源 孙盼盼 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第2期454-460,共7页
原子钟的钟差预测是原子钟时标计算和原子钟驾驭的关键环节,良好的钟差预测可明显提高原子钟时标和原子钟驾驭的精度。为进一步提高氢原子钟的钟差预测精度,本文提出了一种改进型的BP神经网络算法,并用中国计量科学研究院守时实验室氢... 原子钟的钟差预测是原子钟时标计算和原子钟驾驭的关键环节,良好的钟差预测可明显提高原子钟时标和原子钟驾驭的精度。为进一步提高氢原子钟的钟差预测精度,本文提出了一种改进型的BP神经网络算法,并用中国计量科学研究院守时实验室氢原子钟组的实际数据进行了验证。验证结果表明,本文提出的改进型BP神经网络钟差预测算法与目前采用的线性回归钟差预测算法、SVM钟差预测算法相比,显著地提高了氢原子钟钟差预测精度。该钟差预测算法的提出对提高原子钟时标和驾驭精度有很好的推动作用。 展开更多
关键词 氢原子钟 钟差 改进BP神经网络 预测算法
在线阅读 下载PDF
改进PSO-BP神经网络对储层参数的动态预测研究 被引量:16
13
作者 潘少伟 梁鸿军 +1 位作者 李良 王家华 《计算机工程与应用》 CSCD 2014年第10期52-56,共5页
为提高BP神经网络的收敛速度和泛化能力,防止其陷入局部最优值,在前人工作基础上对传统粒子群算法进行了改进,具体包括:设定最大限制速度、改变惯性权重因子和改进适应度函数,并把改进粒子群算法应用于BP神经网络权值和阈值的优化。之... 为提高BP神经网络的收敛速度和泛化能力,防止其陷入局部最优值,在前人工作基础上对传统粒子群算法进行了改进,具体包括:设定最大限制速度、改变惯性权重因子和改进适应度函数,并把改进粒子群算法应用于BP神经网络权值和阈值的优化。之后利用改进粒子群算法优化的BP神经网络实现对储层参数的动态预测,具体步骤为:确定神经网络的输入、输出神经元,定量化时间参数T,利用训练样本构建神经网络模型并进行检验。最后通过平均训练误差对仿真过程进行分析,结果表明改进PSO-BP算法的收敛性与泛化能力均优于BP算法和PSO-BP算法。 展开更多
关键词 改进PSO-BP神经网络 惯性权重因子 储层参数 预测
在线阅读 下载PDF
基于改进BP神经网络私家车保有量的预测研究 被引量:11
14
作者 曾希君 于博 +1 位作者 李向群 孔丁祥 《计算机工程与设计》 CSCD 北大核心 2010年第3期605-608,共4页
根据某地区1996年-2007年连续12年私家车的保有量,提出了一种改进的BP神经网络的私家车保有量的预测模型,以人均国内生产总值、公交车营运总里程、居民人均可支配收入等10个指标作为网络的输入因子,以私家车保有量作为输出因子,利用199... 根据某地区1996年-2007年连续12年私家车的保有量,提出了一种改进的BP神经网络的私家车保有量的预测模型,以人均国内生产总值、公交车营运总里程、居民人均可支配收入等10个指标作为网络的输入因子,以私家车保有量作为输出因子,利用1996年至2007年的数据进行训练和检验,得到了预测仿真的结果,预测值与实际值的误差比传统的神经网络预测的误差更小,达到了预期的目的。 展开更多
关键词 改进神经网络 私家车保有量 预测研究 动量算法 学习速率 模拟仿真
在线阅读 下载PDF
基于改进BP神经网络的煤催化气化预测模型研究 被引量:10
15
作者 崔阳 徐龙 +2 位作者 刘艳 马晓迅 杨建丽 《燃料化学学报》 EI CAS CSCD 北大核心 2011年第2期90-93,共4页
采用改进的三层BP神经网络建立了煤催化气化反应失重率、气化初始温度和最大气化速率所对应温度的预测模型。结果表明,采用改进BP神经网络模型在此研究中可达到较高的精度,其最大预测误差分别为5.18%、5.65%、2.33%,明显小于归回公式的... 采用改进的三层BP神经网络建立了煤催化气化反应失重率、气化初始温度和最大气化速率所对应温度的预测模型。结果表明,采用改进BP神经网络模型在此研究中可达到较高的精度,其最大预测误差分别为5.18%、5.65%、2.33%,明显小于归回公式的预测误差。 展开更多
关键词 煤催化气化 改进BP神经网络 回归公式
在线阅读 下载PDF
改进的神经网络反演微动面波频散曲线 被引量:9
16
作者 周晓华 林君 +2 位作者 陈祖斌 焦健 郭同健 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2011年第3期900-906,共7页
通过分析微动探查方法和改进神经网络迭代反演算法,提出采用改进的神经网络迭代反演微动面波频散曲线。该方法在网络训练学习阶段通过批处理学习和优化网络结构提高网络学习速度;在迭代反演阶段通过vR/λR-f曲线极值点的变化来调整输入... 通过分析微动探查方法和改进神经网络迭代反演算法,提出采用改进的神经网络迭代反演微动面波频散曲线。该方法在网络训练学习阶段通过批处理学习和优化网络结构提高网络学习速度;在迭代反演阶段通过vR/λR-f曲线极值点的变化来调整输入模型以减少迭代反演次数;最后设计反演方案,并对6层介质模型进行频散曲线的网络训练和迭代反演,验证了方法的有效性。对比分析结果表明:该方法明显减少了迭代反演次数,提高了收敛速度,而且具有良好的抗干扰能力。 展开更多
关键词 改进BP神经网络 微动 频散曲线 面波 迭代反演
在线阅读 下载PDF
基于改进BP神经网络的地下水环境脆弱性评价 被引量:20
17
作者 李梅 孟凡玲 +1 位作者 李群 黄强 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第3期245-250,共6页
地下水环境脆弱性具有模糊特性,现有的地下水环境脆弱性评价方法普遍采用加权评分法和模糊数学方法.加权评分法在评价因素权重的确定上人为性较大,并且该方法不能反映各评价因素指标值的连续变化对地下水环境脆弱性的影响;模糊数学方法... 地下水环境脆弱性具有模糊特性,现有的地下水环境脆弱性评价方法普遍采用加权评分法和模糊数学方法.加权评分法在评价因素权重的确定上人为性较大,并且该方法不能反映各评价因素指标值的连续变化对地下水环境脆弱性的影响;模糊数学方法在评价因素权重的确定和隶属度函数的构建上存在着不足.为此,建立了地下水环境脆弱性的改进BP神经网络模型.黄淮平原宁陵县的应用结果表明,改进BP神经网络法训练速度快、精度高,能较好地解决非线性的模式识别问题,如实地评价地下水环境的脆弱性. 展开更多
关键词 地下水环境 脆弱性评价 改进BP神经网络 模式识别
在线阅读 下载PDF
应用改进BP神经网络进行用水量预测 被引量:13
18
作者 麻凤海 杨维 +1 位作者 杨帆 于晓曦 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2004年第2期191-193,共3页
针对工业用水量的特点,建立了改进的BP神经网络用水量预测模型,采用遗传算法对BP神经网络权系进行优化改进,改进的BP神经网络算法预测结果好于灰色理论预测和BP算法预测。以本溪市某供水厂用水量数据对改进的BP神经网络模型进行训练并预... 针对工业用水量的特点,建立了改进的BP神经网络用水量预测模型,采用遗传算法对BP神经网络权系进行优化改进,改进的BP神经网络算法预测结果好于灰色理论预测和BP算法预测。以本溪市某供水厂用水量数据对改进的BP神经网络模型进行训练并预测,将其预测结果与灰色理论预测和BP神经网络预测结果进行比较分析,得出该方法用于供水系统用水量预测误差较小,同时克服了其他两种算法的缺陷。 展开更多
关键词 改进BP神经网络 用水量预测 遗传算法 灰色理论
在线阅读 下载PDF
基于小波包和改进BP神经网络的变压器励磁涌流识别方法 被引量:6
19
作者 公茂法 李美蓉 +4 位作者 殷凡姣 王中刚 刘丙乾 邵群 李杰 《电测与仪表》 北大核心 2015年第6期124-128,共5页
根据励磁涌流和内部故障电流的波形特征存在巨大差异,提出一种基于小波包和改进BP网络的识别励磁涌流的新算法。利用小波包对励磁涌流和故障电流信号进行分解和重构,提取小波包重构系数,计算各频段的能量并进行归一化处理,构造能量特征... 根据励磁涌流和内部故障电流的波形特征存在巨大差异,提出一种基于小波包和改进BP网络的识别励磁涌流的新算法。利用小波包对励磁涌流和故障电流信号进行分解和重构,提取小波包重构系数,计算各频段的能量并进行归一化处理,构造能量特征向量,作为BP网络的输入样本,进行训练和测试,提出保护判据。经过PSCAD/EMTDC和MATLAB软件对大量样本进行仿真验证,证明该方案能够快速准确地识别励磁涌流和内部故障电流。 展开更多
关键词 小波包 改进BP神经网络 励磁涌流 变压器
在线阅读 下载PDF
改进的BP神经网络模型预测充填体强度 被引量:51
20
作者 魏微 高谦 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2013年第6期90-95,共6页
为了准确评价和预测充填体强度,采用改进的BP神经网络算法,利用实验室做的18组充填体单轴抗压强度试验结果,建立了充填体强度与影响因素之间的5-7-1网络模型结构(输入层为5个神经元,隐含层为7个神经元,输出层为1个神经元,输入为胶砂比... 为了准确评价和预测充填体强度,采用改进的BP神经网络算法,利用实验室做的18组充填体单轴抗压强度试验结果,建立了充填体强度与影响因素之间的5-7-1网络模型结构(输入层为5个神经元,隐含层为7个神经元,输出层为1个神经元,输入为胶砂比及各胶凝材料掺量,输出为充填体28 d单轴抗压强度).结果表明,改进的BP神经网络对于充填体的强度具有良好的预测能力,建立的网络模型不仅收敛速度快而且训练精度高,对充填体强度的预测结果与训练数据和测试数据的最大相对误差仅为4.23%. 展开更多
关键词 充填体 强度 预测 改进的BP神经网络
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部