期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于位串行计算的动态精度神经网络处理器
1
作者 郝一帆 支天 杜子东 《高技术通讯》 CAS 2022年第9期881-893,共13页
针对当前神经网络动态精度计算系统在周期性的模型重训练和动态精度切换的过程中会引入大量的计算和访存开销问题,提出了基于串行位计算的动态精度神经网络处理器(DPNN),其可支持任意规模、任意精度的神经网络模型;支持以非重训练的方... 针对当前神经网络动态精度计算系统在周期性的模型重训练和动态精度切换的过程中会引入大量的计算和访存开销问题,提出了基于串行位计算的动态精度神经网络处理器(DPNN),其可支持任意规模、任意精度的神经网络模型;支持以非重训练的方式对模型数据精度进行细粒度调整,并消除了动态精度切换时因权值bit位重叠造成的重复计算与访存。实验结果表明,相较于自感知神经网络系统(SaNNs)的最新进展之一MinMaxNN,DPNN可使计算量平均降低1.34~2.52倍,访存量降低1.16~1.93倍;相较于代表性的bit串行计算神经网络处理器Stripes,DPNN使性能提升2.57倍、功耗节省2.87倍、面积减少1.95倍。 展开更多
关键词 神经网络处理器 动态精度计算 位串行计算
在线阅读 下载PDF
基于剪枝与量化的ResNet模型硬件加速方法
2
作者 曾烨林 林栎 赵亮 《计算机工程与设计》 北大核心 2025年第6期1601-1608,共8页
为快速、方便、正确地将卷积神经网络部署于嵌入式平台实现硬件加速,并解决在硬件部署时遇到的模型计算量大、占用存储多、部署困难等问题,提出一种基于ResNet模型的通道剪枝结合混合精度量化的方法,将模型压缩后,部署于神经网络处理器(... 为快速、方便、正确地将卷积神经网络部署于嵌入式平台实现硬件加速,并解决在硬件部署时遇到的模型计算量大、占用存储多、部署困难等问题,提出一种基于ResNet模型的通道剪枝结合混合精度量化的方法,将模型压缩后,部署于神经网络处理器(neural processing unit, NPU)实现硬件加速。在传统的模型剪枝和量化基础上,采用通道剪枝结合混合精度量化的方法,在保证模型性能的前提下最大程度压缩网络模型。硬件部署推理实验结果表明,该方法可实现对原始模型压缩7.75倍,模型推理速度提升2.55倍,实验验证了该方法对ResNet模型的压缩和硬件推理加速具有一定效果。 展开更多
关键词 通道剪枝 神经网络处理器 混合精度量化 硬件加速 模型压缩 卷积神经网络 推理加速
在线阅读 下载PDF
Puzzle:面向深度学习集成芯片的可扩展框架 被引量:2
3
作者 王梦迪 王颖 +5 位作者 刘成 常开颜 高成思 韩银和 李华伟 张磊 《计算机研究与发展》 EI CSCD 北大核心 2023年第6期1216-1231,共16页
芯粒集成逐渐成为不同场景下敏捷定制深度学习芯片的高可扩展性的解决方案,芯片设计者可以通过集成设计、验证完成的第三方芯粒来降低芯片开发周期和成本,提高芯片设计的灵活性和芯片良率.在传统的芯片设计和商业模式中,编译器等专用软... 芯粒集成逐渐成为不同场景下敏捷定制深度学习芯片的高可扩展性的解决方案,芯片设计者可以通过集成设计、验证完成的第三方芯粒来降低芯片开发周期和成本,提高芯片设计的灵活性和芯片良率.在传统的芯片设计和商业模式中,编译器等专用软件工具链是芯片解决方案的组成部分,并在芯片性能和开发中发挥重要作用.然而,当使用第三方芯粒进行芯片敏捷定制时,第三方芯粒所提供的专用工具链无法预知整个芯片的资源,因此无法解决敏捷定制的深度学习芯片的任务部署问题,而为敏捷定制的芯片设计全新的工具链需要大量的时间成本,失去了芯片敏捷定制的优势.因此,提出一种面向深度学习集成芯片的可扩展框架(scalable framework for integrated deep learning chips)--Puzzle,它包含从处理任务输入到运行时管理芯片资源的完整流程,并自适应地生成高效的任务调度和资源分配方案,降低冗余访存和芯粒间通信开销.实验结果表明,该可扩展框架为深度学习集成芯片生成的任务部署方案可自适应于不同的工作负载和硬件资源配置,与现有方法相比平均降低27.5%的工作负载运行延迟. 展开更多
关键词 芯片敏捷定制 芯粒 深度学习芯片 神经网络处理器 任务调度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部