为快速、方便、正确地将卷积神经网络部署于嵌入式平台实现硬件加速,并解决在硬件部署时遇到的模型计算量大、占用存储多、部署困难等问题,提出一种基于ResNet模型的通道剪枝结合混合精度量化的方法,将模型压缩后,部署于神经网络处理器(...为快速、方便、正确地将卷积神经网络部署于嵌入式平台实现硬件加速,并解决在硬件部署时遇到的模型计算量大、占用存储多、部署困难等问题,提出一种基于ResNet模型的通道剪枝结合混合精度量化的方法,将模型压缩后,部署于神经网络处理器(neural processing unit, NPU)实现硬件加速。在传统的模型剪枝和量化基础上,采用通道剪枝结合混合精度量化的方法,在保证模型性能的前提下最大程度压缩网络模型。硬件部署推理实验结果表明,该方法可实现对原始模型压缩7.75倍,模型推理速度提升2.55倍,实验验证了该方法对ResNet模型的压缩和硬件推理加速具有一定效果。展开更多
芯粒集成逐渐成为不同场景下敏捷定制深度学习芯片的高可扩展性的解决方案,芯片设计者可以通过集成设计、验证完成的第三方芯粒来降低芯片开发周期和成本,提高芯片设计的灵活性和芯片良率.在传统的芯片设计和商业模式中,编译器等专用软...芯粒集成逐渐成为不同场景下敏捷定制深度学习芯片的高可扩展性的解决方案,芯片设计者可以通过集成设计、验证完成的第三方芯粒来降低芯片开发周期和成本,提高芯片设计的灵活性和芯片良率.在传统的芯片设计和商业模式中,编译器等专用软件工具链是芯片解决方案的组成部分,并在芯片性能和开发中发挥重要作用.然而,当使用第三方芯粒进行芯片敏捷定制时,第三方芯粒所提供的专用工具链无法预知整个芯片的资源,因此无法解决敏捷定制的深度学习芯片的任务部署问题,而为敏捷定制的芯片设计全新的工具链需要大量的时间成本,失去了芯片敏捷定制的优势.因此,提出一种面向深度学习集成芯片的可扩展框架(scalable framework for integrated deep learning chips)--Puzzle,它包含从处理任务输入到运行时管理芯片资源的完整流程,并自适应地生成高效的任务调度和资源分配方案,降低冗余访存和芯粒间通信开销.实验结果表明,该可扩展框架为深度学习集成芯片生成的任务部署方案可自适应于不同的工作负载和硬件资源配置,与现有方法相比平均降低27.5%的工作负载运行延迟.展开更多
文摘为快速、方便、正确地将卷积神经网络部署于嵌入式平台实现硬件加速,并解决在硬件部署时遇到的模型计算量大、占用存储多、部署困难等问题,提出一种基于ResNet模型的通道剪枝结合混合精度量化的方法,将模型压缩后,部署于神经网络处理器(neural processing unit, NPU)实现硬件加速。在传统的模型剪枝和量化基础上,采用通道剪枝结合混合精度量化的方法,在保证模型性能的前提下最大程度压缩网络模型。硬件部署推理实验结果表明,该方法可实现对原始模型压缩7.75倍,模型推理速度提升2.55倍,实验验证了该方法对ResNet模型的压缩和硬件推理加速具有一定效果。
文摘芯粒集成逐渐成为不同场景下敏捷定制深度学习芯片的高可扩展性的解决方案,芯片设计者可以通过集成设计、验证完成的第三方芯粒来降低芯片开发周期和成本,提高芯片设计的灵活性和芯片良率.在传统的芯片设计和商业模式中,编译器等专用软件工具链是芯片解决方案的组成部分,并在芯片性能和开发中发挥重要作用.然而,当使用第三方芯粒进行芯片敏捷定制时,第三方芯粒所提供的专用工具链无法预知整个芯片的资源,因此无法解决敏捷定制的深度学习芯片的任务部署问题,而为敏捷定制的芯片设计全新的工具链需要大量的时间成本,失去了芯片敏捷定制的优势.因此,提出一种面向深度学习集成芯片的可扩展框架(scalable framework for integrated deep learning chips)--Puzzle,它包含从处理任务输入到运行时管理芯片资源的完整流程,并自适应地生成高效的任务调度和资源分配方案,降低冗余访存和芯粒间通信开销.实验结果表明,该可扩展框架为深度学习集成芯片生成的任务部署方案可自适应于不同的工作负载和硬件资源配置,与现有方法相比平均降低27.5%的工作负载运行延迟.