期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
面向触觉识别的神经结构搜索算法
1
作者 邹子超 李玉良 +1 位作者 陈萌 马飞红 《哈尔滨工程大学学报》 北大核心 2025年第6期1209-1217,共9页
针对手工设计神经网络需要耗费一定时间和精力的问题,本文提出了一种基于自学习遗传算法的两级式神经结构搜索算法,并应用于触觉识别领域。设计了一种自学习遗传算法,利用强化学习优化遗传算法的选择、交叉和变异算子,以求遗传算法加速... 针对手工设计神经网络需要耗费一定时间和精力的问题,本文提出了一种基于自学习遗传算法的两级式神经结构搜索算法,并应用于触觉识别领域。设计了一种自学习遗传算法,利用强化学习优化遗传算法的选择、交叉和变异算子,以求遗传算法加速收敛,并在陷入局部最优时跳出局部最优;基于自学习遗传算法,提出了两级式神经网络结构搜索算法,用于搜索适合处理触觉时序数据的卷积神经网络和循环神经网络串联模型,且为卷积神经网络和循环神经网络模块引入了层间残差连接以解决网络退化问题,并使用公开触觉数据集对算法进行了实验验证。自建包含22类实验样品的触觉数据集,基于数据集进行了搜索算法实验,并对搜索得到的最优网络进行了分类识别测试,识别准确率为96.81%,与长短期记忆网络、门控循环单元网络和卷积神经网络与长短记忆网络串联模型进行对比,对比结果显示:本文搜索算法搜索出的网络性能更加优异,识别率更高,进一步证明了算法的有效性。 展开更多
关键词 神经网络结构搜索 触觉识别 强化学习 遗传算法 卷积神经网络和循环神经网络串联模型 触觉传感器 卷积神经网络与循环神经网络串联模型 层间残差连接循环神经网络模型
在线阅读 下载PDF
基于硬件感知的多目标神经结构搜索方法 被引量:1
2
作者 许柯 孟源 +2 位作者 杨尚尚 田野 张兴义 《计算机学报》 EI CAS CSCD 北大核心 2023年第12期2651-2669,共19页
神经结构搜索技术可以在大量候选网络集合中搜索到适用于特定任务的神经网络结构.目前,大多数结构搜索网络的部署是针对英伟达GPU、英特尔CPU或谷歌TPU等硬件设备的.然而,将搜索到的架构迁移到一些AI专用加速器中,如寒武纪加速卡或华为A... 神经结构搜索技术可以在大量候选网络集合中搜索到适用于特定任务的神经网络结构.目前,大多数结构搜索网络的部署是针对英伟达GPU、英特尔CPU或谷歌TPU等硬件设备的.然而,将搜索到的架构迁移到一些AI专用加速器中,如寒武纪加速卡或华为Atlas推理加速器,推理效果却表现不佳.主要存在两方面的问题:在搜索空间设计层面,由于硬件架构设计对不同算子的支持存在差异,复用传统的搜索空间到专用神经网络加速器上,其推理效率不是最优的;在结构搜索层面,由于专用神经网络加速器在并行计算资源和数据流水通道等设计的不同,仅采用参数量、计算量作为搜索目标不能准确度量推理延迟,并且限制了神经结构搜索在精度和延迟上的探索空间.为了解决上述问题,本文提出一种基于硬件感知的多目标神经结构搜索方法,首先通过测试不同类型的卷积算子在目标硬件上的性能表现,使用非支配排序设计出定制化的高效搜索空间.然后,将延迟纳入搜索目标,提出一种启发式的混合粒度交叉算子,通过粗粒度阶段间交叉和细粒度阶段内交叉提高种群在多目标下的收敛性和多样性,更好地权衡神经网络的精度和推理延迟.本文主要针对国产寒武纪加速卡MLU270-F4进行了实验分析与方法验证,在CIFAR-10上搜索得到的MLUNet-S4精度比DARTS高0.14%的同时推理速度提升了4.7倍,相比于NSGANet精度仅下降0.04%的同时速度提升了5.5倍;在ILSVRC2012数据集上MLUNet-C相较于具有相同推理速度的Mobile Net V2和Mnas Net速度上提升了1.2倍的同时预测精度也分别提升了2.3%和0.2%,效果提升显著. 展开更多
关键词 图像分类 进化算法 多目标神经结构搜索 硬件感知神经结构搜索 寒武纪加速卡
在线阅读 下载PDF
神经结构搜索的研究进展综述 被引量:8
3
作者 李航宇 王楠楠 +2 位作者 朱明瑞 杨曦 高新波 《软件学报》 EI CSCD 北大核心 2022年第1期129-149,共21页
近年来,深度神经网络(DNNs)在许多人工智能任务中取得卓越表现,例如计算机视觉(CV)、自然语言处理(NLP).然而,网络设计严重依赖专家知识,这是一个耗时且易出错的工作.于是,作为自动化机器学习(AutoML)的重要子领域之一,神经结构搜索(NAS... 近年来,深度神经网络(DNNs)在许多人工智能任务中取得卓越表现,例如计算机视觉(CV)、自然语言处理(NLP).然而,网络设计严重依赖专家知识,这是一个耗时且易出错的工作.于是,作为自动化机器学习(AutoML)的重要子领域之一,神经结构搜索(NAS)受到越来越多的关注,旨在以自动化的方式设计表现优异的深度神经网络模型.全面细致地回顾神经结构搜索的发展过程,进行了系统总结.首先,给出了神经结构搜索的研究框架,并分析每个研究内容的作用;接着,根据其发展阶段,将现有工作划分为4个方面,介绍各阶段发展的特点;然后,介绍现阶段验证结构搜索效果经常使用的数据库,创新性地总结该领域的规范化评估标准,保证实验对比的公平性,促进该领域的长久发展;最后,对神经结构搜索研究面临的挑战进行了展望与分析. 展开更多
关键词 神经结构搜索 自动化机器学习 深度学习 神经网络 规范化评估
在线阅读 下载PDF
基于神经结构搜索的多种植物叶片病害识别 被引量:20
4
作者 黄建平 陈镜旭 +2 位作者 李克新 李君禹 刘航 《农业工程学报》 EI CAS CSCD 北大核心 2020年第16期166-173,共8页
为实现植物病害的自动准确识别,该研究提出一种基于神经结构搜索的植物叶片图像病害识别方法,该方法能够依据特定数据集自动学习到合适的深度神经网络结构。采用包含14种作物和26种病害共54306张的公开PlantVillage植物病害图像作为试... 为实现植物病害的自动准确识别,该研究提出一种基于神经结构搜索的植物叶片图像病害识别方法,该方法能够依据特定数据集自动学习到合适的深度神经网络结构。采用包含14种作物和26种病害共54306张的公开PlantVillage植物病害图像作为试验数据,按照4∶1的比例随机划分,分别用于神经结构搜索和测试搜索到的最优网络结构的性能。同时,为探究神经结构搜索对数据平衡问题是否敏感及图像在缺乏颜色信息时对神经结构搜索的影响,对训练数据进行过采样和亚采样平衡处理及灰度变换。试验结果显示,该研究方法在训练样本数据不平衡和平衡时均可以搜索出合适的网络结构,模型识别准确率分别为98.96%和99.01%;当采用未进行平衡处理的灰度图像作为训练数据时,模型识别准确率有所下降,为95.40%。该方法能够实现植物病害的准确识别,为科学制定病害防治策略提供有效的技术手段。 展开更多
关键词 病害 图像识别 植物 分类 神经结构搜索
在线阅读 下载PDF
神经结构搜索进展概述 被引量:2
5
作者 何明捷 张杰 山世光 《电信科学》 2019年第5期43-50,共8页
近年来,深度学习技术在大量的计算视觉任务上取得了巨大的成功,深度神经结构是一个决定性能的关键要素,全自动的神经结构搜索方法的研究近年来受到了越来越多的关注。全自动的神经结构搜索方法是指针对特定的任务,通过算法自动地学习出... 近年来,深度学习技术在大量的计算视觉任务上取得了巨大的成功,深度神经结构是一个决定性能的关键要素,全自动的神经结构搜索方法的研究近年来受到了越来越多的关注。全自动的神经结构搜索方法是指针对特定的任务,通过算法自动地学习出适用的深度神经结构。各类神经结构搜索方法在探索高性能、高效率的神经结构方面已经展示出了巨大的潜力。从性能评估方法、搜索空间、结构搜索策略3个维度对神经结构搜索方法进行了分类概述:重点介绍了4种降低计算开销的性能评估方法,2类典型的神经结构搜索空间以及基于离散空间和基于连续空间的2种搜索策略。基于连续空间的NAS算法正逐渐成为NAS算法的重要发展方向。 展开更多
关键词 神经结构搜索 深度学习 强化学习
在线阅读 下载PDF
面向轻量化医学图像分割网络的神经结构搜索 被引量:3
6
作者 张福昌 仲国强 毛玉旭 《计算机科学》 CSCD 北大核心 2022年第10期183-190,共8页
现有的性能优异的医学图像分割模型大都由领域专家手动设计,设计过程往往需要大量专业知识和反复实验。此外,过度复杂的分割模型不仅对硬件资源有较高要求,且分割效率较低。为此,提出了用于自动构建轻量化医学图像分割网络的神经结构搜... 现有的性能优异的医学图像分割模型大都由领域专家手动设计,设计过程往往需要大量专业知识和反复实验。此外,过度复杂的分割模型不仅对硬件资源有较高要求,且分割效率较低。为此,提出了用于自动构建轻量化医学图像分割网络的神经结构搜索方法Auto-LW-MISN(Automatically Light-Weight Medical Image Segmentation Network)。通过构建轻量级搜索空间、设计适用于医学图像分割的搜索超网络、设计添加复杂性约束的可微分搜索策略,建立用于自动搜索轻量化医学图像分割网络的神经结构搜索框架。在显微镜细胞图像、肝脏CT图像和前列腺MR图像等数据集上进行实验,结果表明,Auto-LW-MISN能够针对不同模态的医学图像自动构建轻量化的分割模型,其分割精度相比U-net, Attention U-net, Unet++和NAS-Unet等方法均有提高。 展开更多
关键词 深度学习 可微分神经结构搜索 轻量化卷积神经网络 自动化网络结构设计 医学图像分割
在线阅读 下载PDF
神经网络结构搜索在脑数据分析领域的研究进展 被引量:1
7
作者 李晴 汪启昕 +5 位作者 李子遇 祝志远 张诗皓 牟浩南 杨文婷 邬霞 《软件学报》 EI CSCD 北大核心 2024年第4期1682-1702,共21页
神经网络结构搜索(neural architecture search,NAS)是自动化机器学习的重要组成部分,已被广泛应用于多个领域,包括计算机视觉、语音识别等,能够针对特定数据、场景、任务寻找最优的深层神经网络结构.将NAS引入至脑数据分析领域,能够在... 神经网络结构搜索(neural architecture search,NAS)是自动化机器学习的重要组成部分,已被广泛应用于多个领域,包括计算机视觉、语音识别等,能够针对特定数据、场景、任务寻找最优的深层神经网络结构.将NAS引入至脑数据分析领域,能够在图像分割、特征提取、辅助诊断等多个应用领域大幅度提升性能,展现低能耗自动化机器学习的优势.基于NAS进行脑数据分析是当前的研究热点之一,同时也具有一定挑战.目前,在此领域,国内外可供参考的综述性文献较少.对近年来国内外相关文献进行了细致地调研分析,从算法模型、研究任务、实验数据等不同方面对NAS在脑数据分析领域的研究现状进行了综述.同时,也对能够支撑NAS训练的脑数据集进行了系统性总结,并对NAS在脑数据分析中存在的挑战和未来的研究方向进行了分析和展望. 展开更多
关键词 神经网络结构搜索 脑数据分析 神经网络 深度学习
在线阅读 下载PDF
基于神经网络结构搜索的目标识别方法 被引量:2
8
作者 卞伟伟 邱旭阳 申研 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2020年第4期88-92,共5页
针对目标识别需求,对基于神经网络的深度学习方法展开研究。由于深度学习模型中包含了对数据的先验假设,因此人工设计神经网络需要领域内专家丰富的先验知识,且具有劳动密集与时间成本高的缺点。为了获得超越专家个人经验、表现更好的网... 针对目标识别需求,对基于神经网络的深度学习方法展开研究。由于深度学习模型中包含了对数据的先验假设,因此人工设计神经网络需要领域内专家丰富的先验知识,且具有劳动密集与时间成本高的缺点。为了获得超越专家个人经验、表现更好的网络,采用一种可微神经结构搜索的高效结构搜索方法,将搜索空间放宽为连续的空间,然后通过梯度下降来优化体系结构的验证集性能,从而找到面向目标识别的最优神经网络结构。仿真实验结果表明,将基于神经网络结构搜索的目标识别方法应用于“低慢小”类目标识别是可行的。 展开更多
关键词 目标识别 卷积神经网络 神经网络结构搜索 深度学习
在线阅读 下载PDF
神经网络结构搜索方法综述 被引量:5
9
作者 刘建伟 王新坦 《控制理论与应用》 EI CAS CSCD 北大核心 2023年第1期12-31,共20页
如今,深度学习广泛地应用于生活、工作中的各个方面,给我们带来了极大的便利.在此背景下,需要设计针对不同任务的神经网络结构,满足不同的需求.但是,人工设计神经网络结构需要专业的知识,进行大量的实验.因此,神经网络结构搜索算法的研... 如今,深度学习广泛地应用于生活、工作中的各个方面,给我们带来了极大的便利.在此背景下,需要设计针对不同任务的神经网络结构,满足不同的需求.但是,人工设计神经网络结构需要专业的知识,进行大量的实验.因此,神经网络结构搜索算法的研究显得极为重要.神经网络结构搜索(NAS)是自动深度学习(AutoDL)过程中的一个基本步骤,对深度学习的发展与应用有着重要的影响.早期,一些神经网络结构搜索算法虽然搜索到了性能优越的神经网络结构,但是需要大量的计算资源且搜索效率低下.因此,研究人员探索了多种设计神经网络结构的算法,也提出了许多减少计算资源、提高搜索效率的方法.本文首先简要介绍了神经网络结构的搜索空间,其次对神经网络结构搜索算法进行了全面的分类汇总、分析,主要包括随机搜索算法、进化算法、强化学习、基于梯度下降的方法、基于顺序模型的优化算法,再其次探索并总结了提高神经网络结构搜索效率的方法,最后探讨了目前神经网络结构搜索工作中存在的问题以及未来的研究方向. 展开更多
关键词 神经网络结构搜索 搜索空间 搜索策略 性能评估策略
在线阅读 下载PDF
单次神经网络结构搜索研究综述
10
作者 董佩杰 牛新 +1 位作者 魏自勉 陈学晖 《计算机工程与科学》 CSCD 北大核心 2023年第2期191-203,共13页
深度学习技术的快速发展与神经网络结构的创新关系密切。为提升网络结构设计效率,自动化网络结构设计算法—神经网络结构搜索NAS成为近年的研究热点。早期NAS算法通常要对大量候选网络进行训练和评估,带来了巨大的计算开销。通过迁移学... 深度学习技术的快速发展与神经网络结构的创新关系密切。为提升网络结构设计效率,自动化网络结构设计算法—神经网络结构搜索NAS成为近年的研究热点。早期NAS算法通常要对大量候选网络进行训练和评估,带来了巨大的计算开销。通过迁移学习技术,可以加速候选网络的收敛,从而提升网络结构搜索效率。基于权重迁移技术的单次神经网络结构搜索(One-shot NAS)算法以超图为基础,子图之间进行权重共享,提高了搜索效率,但是也面临着协同适应、排序相关性差等挑战性问题。首先介绍了基于权重共享的One-shot NAS算法的相关研究,然后从采样策略、过程解耦和阶段性3个方面对关键技术进行分析梳理,比较分析了典型算法的搜索效果,并对未来的研究方向进行了展望。 展开更多
关键词 神经网络结构搜索 单次神经网络结构搜索 权重共享 迁移学习 深度学习
在线阅读 下载PDF
神经网络结构搜索前沿综述 被引量:1
11
作者 杨木润 曹润柘 +3 位作者 杜权 李垠桥 肖桐 朱靖波 《中文信息学报》 CSCD 北大核心 2023年第10期1-15,共15页
深度学习已经在多个领域得到了广泛的使用,并取得了令人瞩目的成绩。然而优秀的网络结构设计在很大程度上仍然依赖于研究者的先验知识和大量的实验验证,整个过程对于人力、算力等资源消耗巨大。因此,能否让计算机自动地找到最适用于当... 深度学习已经在多个领域得到了广泛的使用,并取得了令人瞩目的成绩。然而优秀的网络结构设计在很大程度上仍然依赖于研究者的先验知识和大量的实验验证,整个过程对于人力、算力等资源消耗巨大。因此,能否让计算机自动地找到最适用于当前任务的神经网络结构成为了当前研究的热点。近年来,研究人员对神经网络结构搜索(Neural Architecture Search,NAS)进行了各种改进,相关研究工作复杂且丰富。为了让读者对神经网络结构搜索方法有更清晰的了解,该文从神经网络结构搜索的三个维度:搜索空间、搜索策略和性能评估策略对现有方法进行了分析,并提出了未来可能的研究方向。 展开更多
关键词 神经网络结构搜索 搜索空间 搜索策略 性能评估策略 自动机器学习
在线阅读 下载PDF
面向神经网络结构搜索的植物叶片病害增强识别方法
12
作者 代国威 田志民 +1 位作者 樊景超 王朝雨 《西北林学院学报》 CSCD 北大核心 2023年第5期153-161,193,共10页
针对植物病害识别模型结构复杂且依赖于人为设计网络结构等问题,通过神经网络结构搜索(NAS),提出一种基于队列分块的神经网络结构搜索方法(NNSS),可实现超轻量级高精度植物叶片图像识别模型的自动构建。首先将12种在经济和环境下有益的... 针对植物病害识别模型结构复杂且依赖于人为设计网络结构等问题,通过神经网络结构搜索(NAS),提出一种基于队列分块的神经网络结构搜索方法(NNSS),可实现超轻量级高精度植物叶片图像识别模型的自动构建。首先将12种在经济和环境下有益的植物共计22类植物叶片图像作为训练样本,利用模糊c均值聚类(FCM)算法分割植物叶片的感染点,以获得叶片受关注的区域信息;通过图像像素的灰度空间相关性,采用快速灰度共生矩阵(FGLCM)算法提取6类受关注区域的纹理特征信息,获得的特征向量运用主成分变换选择重要特征;提出队列分块的局部搜索空间构造方法,将特征信息通过自动构建的模型进行分类。结果表明,NNSS方法取得了98.33%的准确率,特异性和灵敏性表现最优。相比于AlexNet、GoogLeNet、InceptionV3和VGGNet-16模型,改进VGG-INCEP16模型的性能得到进一步提升,但仍低于NNSS方法,这是由于该方法能结合数据集搜索合适的网络结构,对比次优VGG-INCEP16模型准确率至少提高了2.1%。研究结果显示,NNSS方法能够实现准确识别植物病害,对于神经网络模型结构自动搜索的未来具有较高的实际应用价值。 展开更多
关键词 图像处理 神经网络结构搜索 模糊C均值聚类 快速灰度共生矩阵 叶片病害识别
在线阅读 下载PDF
深度学习的轻量化神经网络结构研究综述 被引量:43
13
作者 王军 冯孙铖 程勇 《计算机工程》 CAS CSCD 北大核心 2021年第8期1-13,共13页
随着深度神经网络和智能移动设备的快速发展,网络结构轻量化设计逐渐成为前沿且热门的研究方向,而轻量化的本质是在保持深度神经网络精度的前提下优化存储空间和提升运行速度。阐述深度学习的轻量化网络结构设计方法,对比与分析人工设... 随着深度神经网络和智能移动设备的快速发展,网络结构轻量化设计逐渐成为前沿且热门的研究方向,而轻量化的本质是在保持深度神经网络精度的前提下优化存储空间和提升运行速度。阐述深度学习的轻量化网络结构设计方法,对比与分析人工设计的轻量化方法、基于神经网络结构搜索的轻量化方法和基于自动模型压缩的轻量化方法的创新点与优劣势,总结与归纳上述3种主流轻量化方法中性能优异的网络结构并分析各自的优势和局限性。在此基础上,指出轻量化网络结构设计所面临的挑战,同时对其应用方向及未来发展趋势进行展望。 展开更多
关键词 深度学习 轻量化设计 深度可分离卷积 Octave卷积 神经网络结构搜索 模型压缩
在线阅读 下载PDF
面向语言模型的全自动单元结构搜索
14
作者 万全 吴霖 余正涛 《小型微型计算机系统》 CSCD 北大核心 2022年第11期2308-2313,共6页
可微神经网络结构搜索(DARTS)是目前主流的神经结构搜索(Neural architecture search,NAS)方法之一,但大多数基于DARTS的方法都应用于计算机视觉领域,在自然语言处理领域的研究相对较少.语言模型是目前NAS在自然语言领域应用较多的任务,... 可微神经网络结构搜索(DARTS)是目前主流的神经结构搜索(Neural architecture search,NAS)方法之一,但大多数基于DARTS的方法都应用于计算机视觉领域,在自然语言处理领域的研究相对较少.语言模型是目前NAS在自然语言领域应用较多的任务,DARTS在应用于语言模型任务时,会先对输入进行人工处理,整个过程为:输入-人工处理-结构搜索-输出,不满足NAS不靠人工干预,让机器自动设计网络结构的初衷.本文在DARTS的基础上提出了一种基于全自动搜索单元的NAS方法:1)移除结构搜索前的人工处理过程,实现整个单元搜索过程自动化;2)增加节点和操作数量抵消移除人工处理过程带来的模型规模和复杂度降低的影响;3)Softmax决策优化.本文提出的方法实现了单元搜索过程全自动化,搜索到的模型结构也在PTB和WT2数据集上取得了一定的竞争性. 展开更多
关键词 神经网络结构搜索 语言模型 自然与语言处理 DARTS
在线阅读 下载PDF
基于最优架构搜索网络的液压泵故障诊断改进方法研究
15
作者 郑直 刘彤谣 +2 位作者 赵文博 刘伟民 王志军 《机床与液压》 北大核心 2024年第19期216-224,共9页
针对神经网络结构搜索方法(NAS)在搜索最优结构时存在性能评估效率偏低,以及由于模型泛化性能力不足导致液压泵故障诊断精度过低等问题,提出一种改进的Data-free NAS方法。通过引入CAME优化器和热重启余弦退火优化算法,分别替代SGD优化... 针对神经网络结构搜索方法(NAS)在搜索最优结构时存在性能评估效率偏低,以及由于模型泛化性能力不足导致液压泵故障诊断精度过低等问题,提出一种改进的Data-free NAS方法。通过引入CAME优化器和热重启余弦退火优化算法,分别替代SGD优化器和LambdaLR优化算法,对Data-free NAS的诊断精度和计算效率等性能评估验证功能进行改进优化处理。通过液压泵实测故障实验验证分析可知:所提改进方法较原方法具有显著有效性和优越性;CAME优化器在优化模型的学习率和动量等权重超参数方面具有明显优势,精度和效率分别提升了7.24%和37.5%,且精度高达100%;热重启余弦退火优化算法可优化学习率参数,使效率提升了81.25%。 展开更多
关键词 神经网络结构搜索 液压泵 CAME优化器 热重启余弦退火算法 故障诊断
在线阅读 下载PDF
硬件感知的高效特征融合网络搜索 被引量:1
16
作者 郭家明 张蕊 +5 位作者 支天 何得园 黄迪 常明 张曦珊 郭崎 《计算机学报》 EI CAS CSCD 北大核心 2022年第11期2420-2432,共13页
特征融合网络通过融合多尺度特征来提高目标检测精度,是深度学习目标检测框架中的关键部分.已有的研究工作通过优化融合网络的拓扑结构来提高结果精度,忽略了所需的硬件资源开销以及特征选择和特征融合操作对结果的影响.本文提出了支持... 特征融合网络通过融合多尺度特征来提高目标检测精度,是深度学习目标检测框架中的关键部分.已有的研究工作通过优化融合网络的拓扑结构来提高结果精度,忽略了所需的硬件资源开销以及特征选择和特征融合操作对结果的影响.本文提出了支持多尺度特征融合的注意力感知融合网络(Attention-aware Fusion Network,AFN),通过软硬件协同可实现硬件开销(参数存储、计算时间等)敏感的神经网络自动搜索,从融合网络的特征、路径和操作三方面实现一体化的优化部署.实验结果表明,当主干网络为ResNet50时,在实现相似检测精度时,相比现有最先进的搜索网络NAS-FPN,本文方法的参数量和计算量分别减少29.6%和22.3%,相比现有人工设计网络FPN,本文方法的AP可以提高2.1%.当主干网络为VGG时,相比现有最先进的搜索网络Auto-FPN,本文方法的AP提高了1.7%. 展开更多
关键词 目标检测 神经结构搜索 硬件开销
在线阅读 下载PDF
基于自适应剪枝率与高效权重继承的神经网络通道剪枝方法 被引量:1
17
作者 刘相呈 曹健 +3 位作者 姚宏毅 徐鹏涛 张袁 王源 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第5期764-772,共9页
目前的通道级剪枝方法往往需要复杂的搜索和微调过程,并且容易陷入局部最优解,针对此问题,提出一种新颖的通道剪枝框架(AdaPruner),只需通过一次稀疏训练,就可以针对各种预算复杂度,自适应地生成相应的子网络,并高效地选择适合当前结构... 目前的通道级剪枝方法往往需要复杂的搜索和微调过程,并且容易陷入局部最优解,针对此问题,提出一种新颖的通道剪枝框架(AdaPruner),只需通过一次稀疏训练,就可以针对各种预算复杂度,自适应地生成相应的子网络,并高效地选择适合当前结构的初始化权重。在图像分类任务的多个数据集上实验结果表明,该方法在常用的残差网络和轻量级网络上的性能都优于以往剪枝方法。 展开更多
关键词 卷积神经网络 通道剪枝 稀疏化训练 神经网络结构搜索 图像分类
在线阅读 下载PDF
改进的语义分割模型及其应用 被引量:1
18
作者 王耀文 程军圣 杨宇 《计算机工程与应用》 CSCD 北大核心 2024年第2期337-343,共7页
训练语义分割网络模型需要较为繁琐的人工标注作为训练标签,同时语义分割模型在构建和运行过程中也存在超参数较难确定以及模型过于庞大等问题。为解决这类问题,提出了一种基于标注框生成热点图的标签生成方法,简化了语义分割训练标签... 训练语义分割网络模型需要较为繁琐的人工标注作为训练标签,同时语义分割模型在构建和运行过程中也存在超参数较难确定以及模型过于庞大等问题。为解决这类问题,提出了一种基于标注框生成热点图的标签生成方法,简化了语义分割训练标签的人工标注过程。以及在可微分神经网络结构搜索方法的基础上提出了一种对硬件要求更低的神经网络结构搜索方法,并基于此种方法改进了特征金字塔结构,构建了一个改进的语义分割模型,并在安全帽与口罩检测数据集上进行了试验。与U-Net、FPN等模型比较,新的模型在参数量、计算速度以及精确度上都更有优势。 展开更多
关键词 语义分割模型 神经网络结构搜索 特征金字塔结构 安全帽与口罩检测
在线阅读 下载PDF
大数据智能:从数据拟合最优解到博弈对抗均衡解 被引量:8
19
作者 蒋胤傑 况琨 吴飞 《智能系统学报》 CSCD 北大核心 2020年第1期175-182,共8页
数据驱动的机器学习(特别是深度学习)在自然语言处理、计算机视觉分析和语音识别等领域取得了巨大进展,是人工智能研究的热点。但是传统机器学习是通过各种优化算法拟合训练数据集上的最优模型,即在模型上的平均损失最小,而在现实生活... 数据驱动的机器学习(特别是深度学习)在自然语言处理、计算机视觉分析和语音识别等领域取得了巨大进展,是人工智能研究的热点。但是传统机器学习是通过各种优化算法拟合训练数据集上的最优模型,即在模型上的平均损失最小,而在现实生活的很多问题(如商业竞拍、资源分配等)中,人工智能算法学习的目标应该是是均衡解,即在动态情况下也有较好效果。这就需要将博弈的思想应用于大数据智能。通过蒙特卡洛树搜索和强化学习等方法,可以将博弈与人工智能相结合,寻求博弈对抗模型的均衡解。从数据拟合的最优解到博弈对抗的均衡解能让大数据智能有更广阔的应用空间。 展开更多
关键词 人工智能 大数据 最优拟合 神经网络结构搜索 博弈论 纳什均衡
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部