期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
一氧化氮的生理作用
1
作者 陈龙 徐心诚 《生物学教学》 1997年第3期39-40,共2页
关键词 一氧化氮 神经系理
在线阅读 下载PDF
Calculation of maximum surface settlement induced by EPB shield tunnelling and introducing most effective parameter 被引量:6
2
作者 Sayed Rahim Moeinossadat Kaveh Ahangari Kourosh Shahriar 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3273-3283,共11页
This study aims to predict ground surface settlement due to shallow tunneling and introduce the most affecting parameters on this phenomenon.Based on data collected from Shanghai LRT Line 2 project undertaken by TBM-E... This study aims to predict ground surface settlement due to shallow tunneling and introduce the most affecting parameters on this phenomenon.Based on data collected from Shanghai LRT Line 2 project undertaken by TBM-EPB method,this research has considered the tunnel's geometric,strength,and operational factors as the dependent variables.At first,multiple regression(MR) method was used to propose equations based on various parameters.The results indicated the dependency of surface settlement on many parameters so that the interactions among different parameters make it impossible to use MR method as it leads to equations of poor accuracy.As such,adaptive neuro-fuzzy inference system(ANFIS),was used to evaluate its capabilities in terms of predicting surface settlement.Among generated ANFIS models,the model with all input parameters considered produced the best prediction,so as its associated R^2 in the test phase was obtained to be 0.957.The equations and models in which operational factors were taken into consideration gave better prediction results indicating larger relative effect of such factors.For sensitivity analysis of ANFIS model,cosine amplitude method(CAM) was employed; among other dependent variables,fill factor of grouting(n) and grouting pressure(P) were identified as the most affecting parameters. 展开更多
关键词 surface settlement shallow tunnel tunnel boring machine (TBM) multiple regression (MR) adaptive neuro-fuzzyinference system (ANFIS) cosine amplitude method (CAM)
在线阅读 下载PDF
Element yield rate prediction in ladle furnace based on improved GA-ANFIS 被引量:3
3
作者 徐喆 毛志忠 《Journal of Central South University》 SCIE EI CAS 2012年第9期2520-2527,共8页
The traditional prediction methods of element yield rate can be divided into experience method and data-driven method.But in practice,the experience formulae are found to work only under some specific conditions,and t... The traditional prediction methods of element yield rate can be divided into experience method and data-driven method.But in practice,the experience formulae are found to work only under some specific conditions,and the sample data that are used to establish data-driven models are always insufficient.Aiming at this problem,a combined method of genetic algorithm(GA) and adaptive neuro-fuzzy inference system(ANFIS) is proposed and applied to element yield rate prediction in ladle furnace(LF).In order to get rid of the over reliance upon data in data-driven method and act as a supplement of inadequate samples,smelting experience is integrated into prediction model as fuzzy empirical rules by using the improved ANFIS method.For facilitating the combination of fuzzy rules,feature construction method based on GA is used to reduce input dimension,and the selection operation in GA is improved to speed up the convergence rate and to avoid trapping into local optima.The experimental and practical testing results show that the proposed method is more accurate than other prediction methods. 展开更多
关键词 genetic algorithm adaptive neuro-fuzzy inference system ladle furnace element yield rate PREDICTION
在线阅读 下载PDF
A reversibly used cooling tower with adaptive neuro-fuzzy inference system 被引量:2
4
作者 吴加胜 张国强 +3 位作者 张泉 周晋 郭永辉 沈炜 《Journal of Central South University》 SCIE EI CAS 2012年第3期715-720,共6页
An adaptive neuro-fuzzy inference system(ANFIS) for predicting the performance of a reversibly used cooling tower(RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demons... An adaptive neuro-fuzzy inference system(ANFIS) for predicting the performance of a reversibly used cooling tower(RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demonstrated.Extensive field experimental work was carried out in order to gather enough data for training and prediction.The statistical methods,such as the correlation coefficient,absolute fraction of variance and root mean square error,were given to compare the predicted and actual values for model validation.The simulation results predicted with the ANFIS can be used to simulate the performance of a reversibly used cooling tower quite accurately.Therefore,the ANFIS approach can reliably be used for forecasting the performance of RUCT. 展开更多
关键词 reversibly used cooling tower HEATING adaptive neuro-fuzzy inference system fuzzy modeling approach
在线阅读 下载PDF
Parametric optimization of friction stir welding process of age hardenable aluminum alloys-ANFIS modeling 被引量:2
5
作者 D.Vijayan V.Seshagiri Rao 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1847-1857,共11页
A comparative approach was performed between the response surface method(RSM) and the adaptive neuro-fuzzy inference system(ANFIS) to enhance the tensile properties, including the ultimate tensile strength and the ten... A comparative approach was performed between the response surface method(RSM) and the adaptive neuro-fuzzy inference system(ANFIS) to enhance the tensile properties, including the ultimate tensile strength and the tensile elongation, of friction stir welded age hardenable AA6061 and AA2024 aluminum alloys. The effects of the welding parameters, namely the tool rotational speed, welding speed, axial load and pin profile, on the ultimate tensile strength and the tensile elongation were analyzed using a three-level, four-factor Box-Behnken experimental design. The developed design was utilized to train the ANFIS models. The predictive capabilities of RSM and ANFIS were compared based on the root mean square error, the mean absolute error, and the correlation coefficient based on the obtained data set. The results demonstrate that the developed ANFIS models are more effective than the RSM model. 展开更多
关键词 aluminum alloys response surface method(RSM) adaptive neuro-fuzzy inference system(ANFIS) friction stir welding Box-Behnken design neuro fuzzy
在线阅读 下载PDF
Spatial quality evaluation for drinking water based on GIS and ant colony clustering algorithm 被引量:4
6
作者 侯景伟 米文宝 李陇堂 《Journal of Central South University》 SCIE EI CAS 2014年第3期1051-1057,共7页
To develop a better approach for spatial evaluation of drinking water quality, an intelligent evaluation method integrating a geographical information system(GIS) and an ant colony clustering algorithm(ACCA) was used.... To develop a better approach for spatial evaluation of drinking water quality, an intelligent evaluation method integrating a geographical information system(GIS) and an ant colony clustering algorithm(ACCA) was used. Drinking water samples from 29 wells in Zhenping County, China, were collected and analyzed. 35 parameters on water quality were selected, such as chloride concentration, sulphate concentration, total hardness, nitrate concentration, fluoride concentration, turbidity, pH, chromium concentration, COD, bacterium amount, total coliforms and color. The best spatial interpolation methods for the 35 parameters were found and selected from all types of interpolation methods in GIS environment according to the minimum cross-validation errors. The ACCA was improved through three strategies, namely mixed distance function, average similitude degree and probability conversion functions. Then, the ACCA was carried out to obtain different water quality grades in the GIS environment. In the end, the result from the ACCA was compared with those from the competitive Hopfield neural network(CHNN) to validate the feasibility and effectiveness of the ACCA according to three evaluation indexes, which are stochastic sampling method, pixel amount and convergence speed. It is shown that the spatial water quality grades obtained from the ACCA were more effective, accurate and intelligent than those obtained from the CHNN. 展开更多
关键词 geographical information system (GIS) ant colony clustering algorithm (ACCA) quality evaluation drinking water spatial analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部