期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
人工神经元网学习的多模式现象 被引量:3
1
作者 田大钢 费奇 郭俐 《预测》 CSSCI 1997年第4期60-62,共3页
本文指出人工神经元网学习存在的多模式现象,说明根据人工神经元网学习权重的大小来判断因子重要性必须慎重。
关键词 人工神经元网 多模式现象 预测
在线阅读 下载PDF
基于神经元网和带死区的最小二乘算法的非线性离散时间系统的自适应控制(英文) 被引量:4
2
作者 解学军 王远 《控制理论与应用》 EI CAS CSCD 北大核心 1999年第3期355-360,379,共7页
针对非线性离散时间系统,提出了一种用带死区的最小二乘算法去调节神经网参数的算法,同其他算法相比,这种算法具有非常高的收敛速度.对于这种自适应控制算法,证明了闭环系统的所有信号是有界的,跟踪误差收敛到以零为原点的球中.
关键词 神经元网 最小二乘法 自适应控制 离散时间系统
在线阅读 下载PDF
基于神经网络的涡轮泵多故障诊断 被引量:11
3
作者 张炜 张玉祥 黄先祥 《推进技术》 EI CAS CSCD 北大核心 2003年第1期17-20,39,共5页
针对液体火箭发动机的涡轮泵系统中 ,常出现多故障同时发生的现象 ,分析了涡轮泵常见故障的特征表现 ,建立了涡轮泵系统的标准故障模式。在此基础上 ,提出了采用建立并行BP神经网络进行多故障诊断分类的方法。结果表明 ,并行BP神经网络... 针对液体火箭发动机的涡轮泵系统中 ,常出现多故障同时发生的现象 ,分析了涡轮泵常见故障的特征表现 ,建立了涡轮泵系统的标准故障模式。在此基础上 ,提出了采用建立并行BP神经网络进行多故障诊断分类的方法。结果表明 ,并行BP神经网络结构简单 ,学习诊断速度快 ,对单一故障的诊断分类优于基本BP网络 。 展开更多
关键词 液体推进剂火箭发动机 涡轮泵 人工神经元网 故障诊断
在线阅读 下载PDF
基于BP神经网络电动轮汽车行驶状态监测分析 被引量:6
4
作者 肖健 曾令全 《机械设计与制造》 北大核心 2019年第5期237-240,共4页
行驶状态监测是电动轮汽车整车控制的基础,也是整车网略技术发展的基础。针对电动轮车辆行驶状态监测评估分析,设计分析系统,在此系统中实现了对总线数据的实时监控研究,总线的时间特性与占用率的评估,总线通信数据的存储。通过分析判... 行驶状态监测是电动轮汽车整车控制的基础,也是整车网略技术发展的基础。针对电动轮车辆行驶状态监测评估分析,设计分析系统,在此系统中实现了对总线数据的实时监控研究,总线的时间特性与占用率的评估,总线通信数据的存储。通过分析判定车辆行驶状态所需要的数据以及数据的测量方法,并且利用Matlab使用BP算法建立了BP神经元三层网络模型,预测出判定车辆行驶状态的参数,并与实际理论公式判定参数进行比较,结果表明相对误差在范围内,由此可见用BP神经元网络来实现判定车辆行驶状态参数的方法是可行的,可以作为设计使用的参考。 展开更多
关键词 电动轮汽车 BP算法 神经元网 模型 行驶状态
在线阅读 下载PDF
Mapping methods for output-based objective speech quality assessment using data mining 被引量:2
5
作者 王晶 赵胜辉 +1 位作者 谢湘 匡镜明 《Journal of Central South University》 SCIE EI CAS 2014年第5期1919-1926,共8页
Objective speech quality is difficult to be measured without the input reference speech.Mapping methods using data mining are investigated and designed to improve the output-based speech quality assessment algorithm.T... Objective speech quality is difficult to be measured without the input reference speech.Mapping methods using data mining are investigated and designed to improve the output-based speech quality assessment algorithm.The degraded speech is firstly separated into three classes(unvoiced,voiced and silence),and then the consistency measurement between the degraded speech signal and the pre-trained reference model for each class is calculated and mapped to an objective speech quality score using data mining.Fuzzy Gaussian mixture model(GMM)is used to generate the artificial reference model trained on perceptual linear predictive(PLP)features.The mean opinion score(MOS)mapping methods including multivariate non-linear regression(MNLR),fuzzy neural network(FNN)and support vector regression(SVR)are designed and compared with the standard ITU-T P.563 method.Experimental results show that the assessment methods with data mining perform better than ITU-T P.563.Moreover,FNN and SVR are more efficient than MNLR,and FNN performs best with 14.50% increase in the correlation coefficient and 32.76% decrease in the root-mean-square MOS error. 展开更多
关键词 objective speech quality data mining multivariate non-linear regression fuzzy neural network support vector regression
在线阅读 下载PDF
Analysis and optimization of variable depth increments in sheet metal incremental forming 被引量:1
6
作者 李军超 王宾 周同贵 《Journal of Central South University》 SCIE EI CAS 2014年第7期2553-2559,共7页
A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up a... A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up and then experimentally verified.And the relation between depth increment and the minimum thickness tmin as well as its location was analyzed through the FEM model.Afterwards,the variation of depth increments was defined.The designed part was divided into three areas according to the main deformation mechanism,with Di(i=1,2) representing the two dividing locations.And three different values of depth increment,Δzi(i=1,2,3) were utilized for the three areas,respectively.Additionally,an orthogonal test was established to research the relation between the five process parameters(D and Δz) and tmin as well as its location.The result shows that Δz2 has the most significant influence on the thickness distribution for the corresponding area is the largest one.Finally,a single evaluating indicator,taking into account of both tmin and its location,was formatted with a linear weighted model.And the process parameters were optimized through a genetic algorithm integrated with an artificial neural network based on the evaluating index.The result shows that the proposed algorithm is satisfactory for the optimization of variable depth increment. 展开更多
关键词 incremental forming numerical simulation variable depth increment genetic algorithm OPTIMIZATION
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部