为提高无位置传感器内置式永磁同步电动机(IPMSM)控制性能,提出一种改进的基于反电动势模型的自适应滤波转子位置观测器。针对逆变器非线性和磁场空间谐波引起扩展反电动势6k±1次谐波,进而产生6k次转子位置脉动观测误差问题,提出...为提高无位置传感器内置式永磁同步电动机(IPMSM)控制性能,提出一种改进的基于反电动势模型的自适应滤波转子位置观测器。针对逆变器非线性和磁场空间谐波引起扩展反电动势6k±1次谐波,进而产生6k次转子位置脉动观测误差问题,提出一种基于递归最小二乘算法自适应线性神经元滤波器的转子位置观测方法,从而实现IPMSM矢量控制系统准确解耦控制。该方案能够在线连续调整权重分量,保证了转子位置观测器的快速收敛性。通过自适应滤波器滤除指定的反电动势观测值谐波分量,从而提高正交软件锁相环获得转子位置信息的准确度。最后通过模型仿真和2.2k W IPMSM无传感器矢量控制系统验证了控制策略的有效性。展开更多
A filter algorithm based on cochlear mechanics and neuron filter mechanism is proposed from the view point of vibration.It helps to solve the problem that the non-linear amplification is rarely considered in studying ...A filter algorithm based on cochlear mechanics and neuron filter mechanism is proposed from the view point of vibration.It helps to solve the problem that the non-linear amplification is rarely considered in studying the auditory filters.A cochlear mechanical transduction model is built to illustrate the audio signals processing procedure in cochlea,and then the neuron filter mechanism is modeled to indirectly obtain the outputs with the cochlear properties of frequency tuning and non-linear amplification.The mathematic description of the proposed algorithm is derived by the two models.The parameter space,the parameter selection rules and the error correction of the proposed algorithm are discussed.The unit impulse responses in the time domain and the frequency domain are simulated and compared to probe into the characteristics of the proposed algorithm.Then a 24-channel filter bank is built based on the proposed algorithm and applied to the enhancements of the audio signals.The experiments and comparisons verify that,the proposed algorithm can effectively divide the audio signals into different frequencies,significantly enhance the high frequency parts,and provide positive impacts on the performance of speech enhancement in different noise environments,especially for the babble noise and the volvo noise.展开更多
文摘为提高无位置传感器内置式永磁同步电动机(IPMSM)控制性能,提出一种改进的基于反电动势模型的自适应滤波转子位置观测器。针对逆变器非线性和磁场空间谐波引起扩展反电动势6k±1次谐波,进而产生6k次转子位置脉动观测误差问题,提出一种基于递归最小二乘算法自适应线性神经元滤波器的转子位置观测方法,从而实现IPMSM矢量控制系统准确解耦控制。该方案能够在线连续调整权重分量,保证了转子位置观测器的快速收敛性。通过自适应滤波器滤除指定的反电动势观测值谐波分量,从而提高正交软件锁相环获得转子位置信息的准确度。最后通过模型仿真和2.2k W IPMSM无传感器矢量控制系统验证了控制策略的有效性。
基金Project(17KJB510029)supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions,ChinaProject(GXL2017004)supported by the Scientific Research Foundation of Nanjing Forestry University,China+3 种基金Project(202102210132)supported by the Important Project of Science and Technology of Henan Province,ChinaProject(B2019-51)supported by the Scientific Research Foundation of Henan Polytechnic University,ChinaProject(51521003)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of ChinaProject(KQTD2016112515134654)supported by Shenzhen Science and Technology Program,China。
文摘A filter algorithm based on cochlear mechanics and neuron filter mechanism is proposed from the view point of vibration.It helps to solve the problem that the non-linear amplification is rarely considered in studying the auditory filters.A cochlear mechanical transduction model is built to illustrate the audio signals processing procedure in cochlea,and then the neuron filter mechanism is modeled to indirectly obtain the outputs with the cochlear properties of frequency tuning and non-linear amplification.The mathematic description of the proposed algorithm is derived by the two models.The parameter space,the parameter selection rules and the error correction of the proposed algorithm are discussed.The unit impulse responses in the time domain and the frequency domain are simulated and compared to probe into the characteristics of the proposed algorithm.Then a 24-channel filter bank is built based on the proposed algorithm and applied to the enhancements of the audio signals.The experiments and comparisons verify that,the proposed algorithm can effectively divide the audio signals into different frequencies,significantly enhance the high frequency parts,and provide positive impacts on the performance of speech enhancement in different noise environments,especially for the babble noise and the volvo noise.