期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于活跃点的社区跟踪算法
1
作者 杨绍文 闫光辉 +1 位作者 李雷 张海涛 《应用科学学报》 CSCD 北大核心 2017年第5期602-611,共10页
针对复杂网络社区跟踪中存在忽略演化时域因素以及忽略网络成员演化差异性不足等问题,提出一种社区跟踪方法.对相似函数添加时域信息,并考虑网络演化的平滑性与节点间的差异性,提取网络中的活跃节点进行社区跟踪.实验表明,该算法在DBLP... 针对复杂网络社区跟踪中存在忽略演化时域因素以及忽略网络成员演化差异性不足等问题,提出一种社区跟踪方法.对相似函数添加时域信息,并考虑网络演化的平滑性与节点间的差异性,提取网络中的活跃节点进行社区跟踪.实验表明,该算法在DBLP数据集上能比其他社区跟踪算法更好地发现社区演化过程,且找到的社区信息相似度较高. 展开更多
关键词 社会网络分析 时域网络 社区演化 社区跟踪 活跃节点
在线阅读 下载PDF
ComRank: Joint Weight Technique for the Identification of Influential Communities 被引量:1
2
作者 Muhammad Azam Zia Zhongbao Zhang +2 位作者 Ximing Li Haseeb Ahmad Sen Su 《China Communications》 SCIE CSCD 2017年第4期101-110,共10页
Recently, the community analysis has seen enormous research advancements in the field of social networks. A large amount of the current studies put forward different models and algorithms about most influential people... Recently, the community analysis has seen enormous research advancements in the field of social networks. A large amount of the current studies put forward different models and algorithms about most influential people. However, there is little work to shed light on how to rank communities while considering their levels that are determined by the quality of their published contents. In this paper, we propose solution for measuring the influence of communities and ranking them by considering joint weight composed of internal and external influence of communities. To address this issue, we design a novel algorithm called Com Rank: a modification of Page Rank, which considers the joint weight in order to identify impact of each community and ranking them. We use real-world data trace in citation network and perform extensive experiments to evaluate our proposed algorithm. The comparative results depict significant improvements by our algorithm in community ranking due to the inclusion of proposed weighting feature. 展开更多
关键词 online social networks community rank citation network Page Rank influence
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部