期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
具有差分进化算子的社会蜘蛛群优化算法(英文) 被引量:2
1
作者 赵汝鑫 罗淇芳 周永权 《广西科学》 CAS 2017年第3期247-257,共11页
【目的】社会蜘蛛群优化算法(SSO)是一种新颖的元启发式优化算法,自从它被提出之后就受到该领域学者的广泛关注,并且也被成功应用到许多领域。但是由于社会蜘蛛群优化算法还处在算法的研究初期,该算法的收敛速度与收敛精度还需要进一步... 【目的】社会蜘蛛群优化算法(SSO)是一种新颖的元启发式优化算法,自从它被提出之后就受到该领域学者的广泛关注,并且也被成功应用到许多领域。但是由于社会蜘蛛群优化算法还处在算法的研究初期,该算法的收敛速度与收敛精度还需要进一步提高。【方法】将差分进化算子引入到社会蜘蛛群优化算法(SSO-DM)中,并将改进的算法应用于函数优化问题中,通过5个标准测试函数来验证基于差分进化算子的社会蜘蛛群优化算法(SSO-DM)的优化性能。【结果】差分进化算子增强了社会蜘蛛群优化算法的收敛速度与收敛精度。【结论】本研究中所提出的算法能够获得精确解,并且它也具有较快的收敛速度和较高的算法稳定性。 展开更多
关键词 社会蜘蛛群优化算法 差分进化算子 元启发式优化算法 函数优化
在线阅读 下载PDF
基于SSI-PSO的汽车碰撞试验时序数据处理与分类方法 被引量:2
2
作者 李晗 刘钊 朱平 《汽车安全与节能学报》 CAS CSCD 北大核心 2022年第2期259-268,共10页
为实现汽车碰撞试验假人响应曲线数据集的类别辨识,研究了面向智能优化算法的问题转换与构造方法。针对假人曲线数据的特征处理与分类过程,提出了一种基于社会蜘蛛粒子群优化算法(SSI-PSO)的碰撞试验多变量时序数据特征选择与分类方法;... 为实现汽车碰撞试验假人响应曲线数据集的类别辨识,研究了面向智能优化算法的问题转换与构造方法。针对假人曲线数据的特征处理与分类过程,提出了一种基于社会蜘蛛粒子群优化算法(SSI-PSO)的碰撞试验多变量时序数据特征选择与分类方法;利用汽车碰撞试验采集的假人曲线数据,测试和验证了该方法。结果表明:本文方法可获得面向假人曲线数据分类的最佳特征组合方式与较小规模的神经网络结构;该方法的假人曲线分类模型性能提升17.5%、分类精度达到96.5%。因而,实现了对碰撞试验假人响应曲线标注信息的有效分类。 展开更多
关键词 汽车碰撞 安全数据集 多变量时序数据 社会蜘蛛粒子优化(SSI-PSO)算法 特征工程 监督学习 启发式优化算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部