期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
培养创新思维的新教法
1
《语文建设》 CSSCI 北大核心 2002年第2期7-7,共1页
关键词 语文教学 创新思维 教学方 想像教学 社会学习法 合作讨论 支架式教学
在线阅读 下载PDF
Prediction of dust fall concentrations in urban atmospheric environment through support vector regression 被引量:2
2
作者 焦胜 曾光明 +3 位作者 何理 黄国和 卢宏玮 高青 《Journal of Central South University》 SCIE EI CAS 2010年第2期307-315,共9页
Support vector regression (SVR) method is a novel type of learning machine algorithms, which is seldom applied to the development of urban atmospheric quality models under multiple socio-economic factors. This study... Support vector regression (SVR) method is a novel type of learning machine algorithms, which is seldom applied to the development of urban atmospheric quality models under multiple socio-economic factors. This study presents four SVR models by selecting linear, radial basis, spline, and polynomial functions as kernels, respectively for the prediction of urban dust fall levels. The inputs of the models are identified as industrial coal consumption, population density, traffic flow coefficient, and shopping density coefficient. The training and testing results show that the SVR model with radial basis kernel performs better than the other three both in the training and testing processes. In addition, a number of scenario analyses reveal that the most suitable parameters (insensitive loss function e, the parameter to reduce the influence of error C, and discrete level or average distribution of parameters σ) are 0.001, 0.5, and 2 000, respectively. 展开更多
关键词 support vector regression urban air quality dust fall soeio-economic factors radial basis function
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部