期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于新奇度量的社交事件推荐方法
1
作者 孙滔 段张甜 +2 位作者 朱浩楠 郭沛豪 孙鹤立 《计算机应用》 CSCD 北大核心 2024年第3期760-766,共7页
在社交事件网络(EBSN)中,推荐工作都是从用户的历史喜好出发建模用户偏好,阻碍了用户接触新事物的范围和途径。针对上述问题,提出基于新奇度量的社交事件推荐模型UER(Unexpectedness-based Event Recommendation)。UER模型包括Base和Une... 在社交事件网络(EBSN)中,推荐工作都是从用户的历史喜好出发建模用户偏好,阻碍了用户接触新事物的范围和途径。针对上述问题,提出基于新奇度量的社交事件推荐模型UER(Unexpectedness-based Event Recommendation)。UER模型包括Base和Unexpected两个子模型,首先,Base子模型基于用户、事件以及用户历史事件交互序列特征,通过注意力机制衡量事件在用户历史喜好中的权重,最终预测用户参加事件的概率;其次,Unexpected子模型通过自注意力机制提取用户的多个兴趣表示来计算用户自身新奇度和候选事件对用户的新奇值,从而衡量推荐事件的新奇程度。在Meetup-加州数据集上,UER模型相较于DIN(Deep Interest Network)和PURS(Personalized Unexpected Recommender System)的推荐命中率(HR)分别提高22.9%和30.3%,归一化折损累积收益(NDCG)分别提高27.5%和42.3%,推荐事件的新奇程度分别提高54.5%和21.4%;在Meetup-纽约数据集上,UER模型相较于DIN和PURS的HR分别提高18.2%和21.8%,NDCG分别提高26.9%和32.0%,推荐事件的新奇程度分别提高52.6%和20.8%。 展开更多
关键词 社交事件网络 事件推荐 异构信息网络 注意力机制 交互序列
在线阅读 下载PDF
基于事件的社交网络上的CCP事件规划 被引量:1
2
作者 吴定明 林俊杰 +1 位作者 陆克中 徐宇明 《软件学报》 EI CSCD 北大核心 2023年第11期5249-5266,共18页
在基于事件的社交网络(EBSNs)上,事件规划一直是一个热点研究问题.事件规划问题的核心是基于事件和用户的约束条件,对于一组事件,为每个事件选择一组用户,以最大化预先定义的目标函数.在实际应用中,事件冲突、事件容量、用户容量、社交... 在基于事件的社交网络(EBSNs)上,事件规划一直是一个热点研究问题.事件规划问题的核心是基于事件和用户的约束条件,对于一组事件,为每个事件选择一组用户,以最大化预先定义的目标函数.在实际应用中,事件冲突、事件容量、用户容量、社交偏好、事件偏好,简称为CCP,即冲突conflict、容量capacity、偏好preference,是规划方案需要考虑的重要因素.然而,现有的所有工作均未在研究事件规划问题时考虑CCP.为了获得更加合理有效的规划方案,首次提出一种CCP事件规划问题.相比只考虑部分因素的规划,CCP事件规划面临着问题更复杂、约束条件更多的困难.为了有效求解该问题,提出事件导向的贪心用户选择算法、事件导向的动态规划算法及基于收益预测的快速版本和事件导向的近似最优用户选择算法.大量的实验结果验证所提算法的有效性和高效性. 展开更多
关键词 基于事件社交网络 事件规划 多约束
在线阅读 下载PDF
基于事件的社交网络上的双边偏好稳态规划 被引量:5
3
作者 成雨蓉 王国仁 +1 位作者 李博扬 袁野 《软件学报》 EI CSCD 北大核心 2019年第3期573-588,共16页
在基于事件的社交网络中,一个经典的问题是为用户规划其感兴趣的事件.现有的工作仅仅考虑用户的喜好,仅从用户的角度出发,为其安排尽可能感兴趣的事件来参加.然而,从事件主办者的角度出发,他们亦希望为事件安排的用户尽可能有更大的影响... 在基于事件的社交网络中,一个经典的问题是为用户规划其感兴趣的事件.现有的工作仅仅考虑用户的喜好,仅从用户的角度出发,为其安排尽可能感兴趣的事件来参加.然而,从事件主办者的角度出发,他们亦希望为事件安排的用户尽可能有更大的影响力,用户的可靠性尽可能高,以保障事件能够顺利开展,并取得预期的效果.本质上来说,基于事件的社交网络上的规划问题是一个双向选择的问题,而现有的所有工作均未从用户和事件的双边偏好考虑问题.因此,提出一种双边偏好稳态规划问题来解决这种双向选择问题.该问题首次提出,因此现有工作中未有相关算法可供解决该问题.对比之前只考虑用户偏好的规划,在考虑用户和事件双边偏好时,面临着问题更复杂、约束条件更多的困难.因此,提出两种基础算法和一种改进算法来高效、高质量地解决这个问题,并用大量的实验验证所提出算法的高效性和有效性. 展开更多
关键词 基于事件社交网络 双边偏好 稳态规划
在线阅读 下载PDF
融合用户历史行为与社交关系的个性化社交事件推荐方法 被引量:4
4
作者 孙鹤立 徐统 +1 位作者 何亮 贾晓琳 《计算机应用》 CSCD 北大核心 2021年第2期324-329,共6页
为了提升基于事件的社交网络(EBSN)中社交事件的推荐效果,提出了融合用户历史行为和社交关系的个性化社交事件推荐方法。首先采用深度学习技术从用户的历史行为以及用户之间的潜在社交关系两个方面建立用户模型;然后在对用户偏好建模时... 为了提升基于事件的社交网络(EBSN)中社交事件的推荐效果,提出了融合用户历史行为和社交关系的个性化社交事件推荐方法。首先采用深度学习技术从用户的历史行为以及用户之间的潜在社交关系两个方面建立用户模型;然后在对用户偏好建模时,引入用户偏好的负向量表示,并使用注意力权重层根据不同的候选推荐事件为用户历史行为中不同的事件和用户社交关系中不同的好友分配不同的权重,同时考虑了事件以及群组的多种特征;最后在真实数据集上进行了大量实验。实验结果表明,该个性化社交事件推荐方法在命中率(HR)、归一化折损累计增益(NDCG)、平均倒数排名(MRR)评价指标上优于对比的深度用户社交事件推荐(DUMER)模型和融合注意力机制的深度兴趣网络(DIN)模型。 展开更多
关键词 基于事件社交网络 深度学习 个性化推荐方法 注意力机制 用户建模
在线阅读 下载PDF
基于地域特征和异构社交关系的事件推荐算法研究 被引量:1
5
作者 乔治 周川 +2 位作者 纪现才 曹亚男 郭莉 《中文信息学报》 CSCD 北大核心 2016年第5期47-56,共10页
近几年,在基于事件的社交网络(EBSNs)服务中,为便于增强用户体验,事件推荐任务一直被广泛研究。本文基于对EBSN中用户行为数据的详细分析,提出了一种新型的融合多种数据特征的潜在因子模型。该模型综合考虑EBSN中两种新型的数据特征:异... 近几年,在基于事件的社交网络(EBSNs)服务中,为便于增强用户体验,事件推荐任务一直被广泛研究。本文基于对EBSN中用户行为数据的详细分析,提出了一种新型的融合多种数据特征的潜在因子模型。该模型综合考虑EBSN中两种新型的数据特征:异构的社交关系特征(线上社交关系+线下社交关系)和用户参与行为的地域性特征。基于真实的Meetup数据集,实验结果表明我们的算法在解决事件推荐问题时比传统的算法有更好的性能。 展开更多
关键词 事件推荐 基于事件社交网络 用户行为倾向 协从过滤 地域特征 异构社交关系
在线阅读 下载PDF
事件社交网中基于有向标签图及用户反馈的活动推荐方法
6
作者 单晓欢 张志国 +1 位作者 宋宝燕 任成林 《计算机应用》 CSCD 北大核心 2020年第2期448-453,共6页
由于基于事件的社交网络(EBSN)中的活动具有时效性,传统社交网络推荐算法无法适用于EBSN。此外,大多数算法忽略了能影响后续推荐质量的前用户是否接受活动的反馈意见。为此,提出一种EBSN中基于有向标签图及用户反馈的活动推荐方法。首先... 由于基于事件的社交网络(EBSN)中的活动具有时效性,传统社交网络推荐算法无法适用于EBSN。此外,大多数算法忽略了能影响后续推荐质量的前用户是否接受活动的反馈意见。为此,提出一种EBSN中基于有向标签图及用户反馈的活动推荐方法。首先,将EBSN抽象为有向标签图,并抽取图节点及边的属性特征信息,构建有向图结构特征(DGSF)索引,该索引由节点属性特征索引、有向边属性特征索引以及时间特征索引构成,利用该索引对节点及边进行初次过滤。其次,提出基于DGSF索引的多属性候选集过滤策略,利用时间、节点的出入度、标签类型等特征的限制,实现对查询图候选集的进一步剪枝,避免冗余计算。然后,提出一种具有用户反馈的改进UCB(Upper Confidence Bound)活动推荐算法--EN_UCB,通过引入弹性网回归,根据多影响因素计算用户对活动的兴趣值,为用户推荐兴趣值高的活动,同时接收用户是否接受该活动的反馈,以优化后续用户的推荐。大量实验结果表明,EN_UCB算法的接受率高于TS(Thompson Sampling)、UCB以及eGreedy算法,遗憾率远远低于TS和eGreedy算法,且运行效率高于TS、UCB以及eGreedy算法,活动数越大,优势越明显。所提算法能有效实现EBSN上的在线活动推荐。 展开更多
关键词 基于事件社交网络 有向标签图 用户反馈 活动推荐 弹性网回归
在线阅读 下载PDF
结合用户长短期兴趣与事件影响力的事件推荐策略 被引量:8
7
作者 钱忠胜 杨家秀 +1 位作者 李端明 叶祖铼 《计算机研究与发展》 EI CSCD 北大核心 2022年第12期2803-2815,共13页
事件社交网络的快速发展引起的信息过载问题是当前面临的主要挑战,深度学习等技术可从大量的数据中挖掘潜在的关联信息,从而有效应对该问题.同时,有研究表明用户兴趣在长期和短期的时序上具有不同的特征模式,深度挖掘用户的时序特征和... 事件社交网络的快速发展引起的信息过载问题是当前面临的主要挑战,深度学习等技术可从大量的数据中挖掘潜在的关联信息,从而有效应对该问题.同时,有研究表明用户兴趣在长期和短期的时序上具有不同的特征模式,深度挖掘用户的时序特征和兴趣可有效地为用户提供个性化的事件推荐信息.基于此,提出一种将用户长短期兴趣与事件影响力相结合的推荐策略.通过带注意力机制的图神经网络和长短期记忆网络获取用户的长短期兴趣,同时,对候选事件构建针对目标用户的影响力.根据用户长短期兴趣和事件影响力预测目标用户的参与概率,最终通过排序后的参与概率向用户推荐TOP-K兴趣事件.实验结果表明,所提推荐模型在多个指标上均有所改善,其推荐性能优于已有对比模型,具备很好的推荐效果. 展开更多
关键词 基于事件社交网络 个性化事件推荐 长短期兴趣 图神经网络 注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部