Copper alloyed with various compositions of nickel and tin were cast into molds under argon atmosphere.The cast rods were homogenized,solution heat treated,followed by aging for different time duration.The specimens w...Copper alloyed with various compositions of nickel and tin were cast into molds under argon atmosphere.The cast rods were homogenized,solution heat treated,followed by aging for different time duration.The specimens were characterized for microstructure and tested for microhardness and wear rate.A hybrid model with a linear function and radial basis function was developed to analyze the influence of nickel,tin,and aging time on the microhardness and tribological behavior of copper-nickel-sin alloy system.The results indicate that increase in the composition of nickel and tin increases the microhardness and decreases the wear rate of the alloy.The increase in the concentration of nickel and tin decreases the peak aging time of the alloy system.展开更多
Wheel/rail relationship is a fundamental problem of railway system. Wear of wheel profiles has great effect on vehicle performance. Thus, it is important not just for the analysis of wear characteristics but for its p...Wheel/rail relationship is a fundamental problem of railway system. Wear of wheel profiles has great effect on vehicle performance. Thus, it is important not just for the analysis of wear characteristics but for its prediction. Actual wheel profiles of the high-speed trains on service were measured in the high-speed line and the wear characteristics were analyzed which came to the following results. The wear location was centralized from-15 mm to 25 mm. The maximum wear value appeared at the area of 5 mm from tread center far from wheel flange and it was less than 1.5 mm. Then, wheel wear was fitted to get the polynomial functions on different locations and operation mileages. A binary numerical prediction model was raised to predict wheel wear. The prediction model was proved by vehicle system dynamics and wheel/rail contact geometry. The results show that the prediction model can reflect wear characteristics of measured profiles and vehicle performances.展开更多
文摘Copper alloyed with various compositions of nickel and tin were cast into molds under argon atmosphere.The cast rods were homogenized,solution heat treated,followed by aging for different time duration.The specimens were characterized for microstructure and tested for microhardness and wear rate.A hybrid model with a linear function and radial basis function was developed to analyze the influence of nickel,tin,and aging time on the microhardness and tribological behavior of copper-nickel-sin alloy system.The results indicate that increase in the composition of nickel and tin increases the microhardness and decreases the wear rate of the alloy.The increase in the concentration of nickel and tin decreases the peak aging time of the alloy system.
基金Project(U1234208)supported by the Major Program of the National Natural Science Foundation of ChinaProject(2013J008-A)supported by the Research and Development Plan of Major Tasks in Science and Technology China Railways Co.Ltd.,China
文摘Wheel/rail relationship is a fundamental problem of railway system. Wear of wheel profiles has great effect on vehicle performance. Thus, it is important not just for the analysis of wear characteristics but for its prediction. Actual wheel profiles of the high-speed trains on service were measured in the high-speed line and the wear characteristics were analyzed which came to the following results. The wear location was centralized from-15 mm to 25 mm. The maximum wear value appeared at the area of 5 mm from tread center far from wheel flange and it was less than 1.5 mm. Then, wheel wear was fitted to get the polynomial functions on different locations and operation mileages. A binary numerical prediction model was raised to predict wheel wear. The prediction model was proved by vehicle system dynamics and wheel/rail contact geometry. The results show that the prediction model can reflect wear characteristics of measured profiles and vehicle performances.