The aim of this study is to address the issues associated with traditional magnetorheological fluid(MRF)dampers,such as insufficient damping force after power failure and susceptibility to settlement.In order to achie...The aim of this study is to address the issues associated with traditional magnetorheological fluid(MRF)dampers,such as insufficient damping force after power failure and susceptibility to settlement.In order to achieve this,a bidirectional adjustable MRF damper was designed and developed.Magnetic field simulation analysis was conducted on the damper,along with simulation analysis on its dynamic characteristics.The dynamic characteristics were ultimately validated through experimental testing on the material testing machine,thereby corroborating the theoretical simulation results.Concurrently,this process generated valuable test data for subsequent implementation of the semi-active vibration control system.The simulation and test results demonstrate that the integrated permanent magnet effectively accomplishes bidirectional regulation.The magnetic induction intensity of the damping channel is 0.2 T in the absence of current,increases to 0.5 T when a maximum forward current of 4 A is applied,and becomes 0 T when a maximum reverse current of 3.8 A is applied.When the excitation amplitude is 8 mm and the frequency is 2 Hz,with the applied currents varying,the maximum damping force reaches 8 kN,while the minimum damping force measures at 511 N.Additionally,at zero current,the damping force stands at 2 kN,which aligns closely with simulation results.The present paper can serve as a valuable reference for the design and research of semi-active MRF dampers.展开更多
Urea-isobutyraldehyde-formaldehyde (UIF) resin was synthesized from urea, isobutyraldehyde, and formaldehyde using sulfuric acid as a catalyst by one pot method. The effects of molar ratios of isobutyraldehyde to form...Urea-isobutyraldehyde-formaldehyde (UIF) resin was synthesized from urea, isobutyraldehyde, and formaldehyde using sulfuric acid as a catalyst by one pot method. The effects of molar ratios of isobutyraldehyde to formaldehyde (n(I)/n(F)) and aldehyde to urea (n(A)/n(U)) on the yield, hydroxyl value (vs KOH) and softening point of the resin were investigated. The structure of the resin was characterized by FT-IR, 1H-NMR and 13C-NMR. The results show that when the molar ratio of urea to isobutyraldehyde to formaldehyde (n(U)/n(I)/n(F)) is 1.0/3.0/3.0, the yield UIF resin is 67.1%, and the softening point and hydroxyl value are 88 ℃ and 37 mg/g, respectively. The FT-IR, 1H-NMR and 13C-NMR results show that the lactam is formed by aminomethylation from urea, isobutyraldehyde, and formaldehyde.展开更多
In this article, we considers the thermodynamics analysis of creeping viscous nanofluid flow in a horizontal ciliated tube under the effects of a uniform magnetic field and porous medium. Moreover, energy analysis is ...In this article, we considers the thermodynamics analysis of creeping viscous nanofluid flow in a horizontal ciliated tube under the effects of a uniform magnetic field and porous medium. Moreover, energy analysis is performed in the presence of an internal heat source and thermal radiation phenomena. The thermal conductivity of base fluid water is strengthened by considering the carbon nanotubes (CNTs). Mathematical formulation operated, results in a set of non-linear coupled partial differential equations. The governed differential system is transformed into an ordinary differential system by considering suitable similarity variables. Exact solutions in the closed form are computed for the temperature, momentum and pressure gradient profiles. In this study, special attention is devoted to the electrical conductivity of the CNTs. Streamlines patterns are also discussed to witness the flow lines for different parameters. Thermodynamics analysis shows that entropy of the current flow system is an increasing function of Brinkmann number, magnetic parameter, nanoparticle concentration parameter and Darcy number.展开更多
文摘The aim of this study is to address the issues associated with traditional magnetorheological fluid(MRF)dampers,such as insufficient damping force after power failure and susceptibility to settlement.In order to achieve this,a bidirectional adjustable MRF damper was designed and developed.Magnetic field simulation analysis was conducted on the damper,along with simulation analysis on its dynamic characteristics.The dynamic characteristics were ultimately validated through experimental testing on the material testing machine,thereby corroborating the theoretical simulation results.Concurrently,this process generated valuable test data for subsequent implementation of the semi-active vibration control system.The simulation and test results demonstrate that the integrated permanent magnet effectively accomplishes bidirectional regulation.The magnetic induction intensity of the damping channel is 0.2 T in the absence of current,increases to 0.5 T when a maximum forward current of 4 A is applied,and becomes 0 T when a maximum reverse current of 3.8 A is applied.When the excitation amplitude is 8 mm and the frequency is 2 Hz,with the applied currents varying,the maximum damping force reaches 8 kN,while the minimum damping force measures at 511 N.Additionally,at zero current,the damping force stands at 2 kN,which aligns closely with simulation results.The present paper can serve as a valuable reference for the design and research of semi-active MRF dampers.
基金Project(2006A10902001) supported by the Science and Technology Plan of Guangdong Province, ChinaProject(2007Z3-D0351) supported by the Science and Technology Plan of Guangzhou City, China
文摘Urea-isobutyraldehyde-formaldehyde (UIF) resin was synthesized from urea, isobutyraldehyde, and formaldehyde using sulfuric acid as a catalyst by one pot method. The effects of molar ratios of isobutyraldehyde to formaldehyde (n(I)/n(F)) and aldehyde to urea (n(A)/n(U)) on the yield, hydroxyl value (vs KOH) and softening point of the resin were investigated. The structure of the resin was characterized by FT-IR, 1H-NMR and 13C-NMR. The results show that when the molar ratio of urea to isobutyraldehyde to formaldehyde (n(U)/n(I)/n(F)) is 1.0/3.0/3.0, the yield UIF resin is 67.1%, and the softening point and hydroxyl value are 88 ℃ and 37 mg/g, respectively. The FT-IR, 1H-NMR and 13C-NMR results show that the lactam is formed by aminomethylation from urea, isobutyraldehyde, and formaldehyde.
文摘In this article, we considers the thermodynamics analysis of creeping viscous nanofluid flow in a horizontal ciliated tube under the effects of a uniform magnetic field and porous medium. Moreover, energy analysis is performed in the presence of an internal heat source and thermal radiation phenomena. The thermal conductivity of base fluid water is strengthened by considering the carbon nanotubes (CNTs). Mathematical formulation operated, results in a set of non-linear coupled partial differential equations. The governed differential system is transformed into an ordinary differential system by considering suitable similarity variables. Exact solutions in the closed form are computed for the temperature, momentum and pressure gradient profiles. In this study, special attention is devoted to the electrical conductivity of the CNTs. Streamlines patterns are also discussed to witness the flow lines for different parameters. Thermodynamics analysis shows that entropy of the current flow system is an increasing function of Brinkmann number, magnetic parameter, nanoparticle concentration parameter and Darcy number.