在长期定位试验的基础上研究了太湖地区黄泥土不同施氮水平对水稻产量、碳氮同化及不同土层氮的影响。结果表明,长期施氮量(N)在161.0 kg hm-2处理和高于该施氮量处理的产量之间没有显著差异。拔节期、孕穗期和灌浆期施氮量在161.0 kg h...在长期定位试验的基础上研究了太湖地区黄泥土不同施氮水平对水稻产量、碳氮同化及不同土层氮的影响。结果表明,长期施氮量(N)在161.0 kg hm-2处理和高于该施氮量处理的产量之间没有显著差异。拔节期、孕穗期和灌浆期施氮量在161.0 kg hm-2处理和高于该施氮量处理的碳氮同化水平之间几乎没有差异,但都高于施氮量在57.5 kg hm-2处理的。不同土层氮分布结果表明,长期施氮量在161.0 kg hm-2和高于该施氮量各处理中,长期施入有机肥配施NPK肥处理残留最深,其次是长期施入化肥N的处理,长期秸秆还田配施N肥处理较浅。展开更多
Elemental doping is an effective strategy for tuning the band structure of graphite carbon nitride(CN)to enhance its photocatalytic performance.In this study,sodium(Na)and oxygen(O)co-doped carbon nitride(Na/O-CN_(x),...Elemental doping is an effective strategy for tuning the band structure of graphite carbon nitride(CN)to enhance its photocatalytic performance.In this study,sodium(Na)and oxygen(O)co-doped carbon nitride(Na/O-CN_(x),x=1.0,2.0,3.0,4.0)was synthesized via solid-phase reaction of sodium citrate(NaCA)and pure CN powder in the Teflon-sealed autoclave under air conditions at 180℃.Surface area of Na/O-CN_(3.0) is measured to be 18.8 m^(2)/g,increasing by 60.7%compared to that of pure CN(11.7 m^(2)/g).Bandgap energy of Na/O-CN_(3.0) is determined to be 2.68 eV,marginally lower than that of pure CN(2.70 eV),thereby enhancing its capacity for sunlight absorption.Meanwhile,the incorporation of Na and O atoms into Na/O-CN_(x) is found to effectively reduce recombination rates of photogenerated electron-hole pairs.As a result,Na/O-CN_(x) samples exhibit markedly enhanced photocatalytic hydrogen evolution activity under visible light irradiation.Notably,the optimal Na/O-CN_(3.0) sample achieves a photocatalytic hydrogen production rate of 103.2μmol·g^(–1)·h^(–1),which is 8.2 times greater than that of pure CN(11.2μmol·g^(–1)·h^(–1)).Furthermore,a series of Na/O-CN_(x)-yO_(2)(y=0,20%,40%,60%,80%,100%)samples were prepared by modulating the oxygen content within reaction atmosphere.The catalytic performance evaluations reveal that the incorporation of both Na and O atoms in Na/O-CN_(3.0) enhances photocatalytic activity.This study also introduces novel methodologies for synthesis of metal atom-doped CN materials at lower temperature,highlighting the synergistic effect of Na and O atoms in photocatalytic hydrogen production of Na/O-CN_(x) samples.展开更多
文摘在长期定位试验的基础上研究了太湖地区黄泥土不同施氮水平对水稻产量、碳氮同化及不同土层氮的影响。结果表明,长期施氮量(N)在161.0 kg hm-2处理和高于该施氮量处理的产量之间没有显著差异。拔节期、孕穗期和灌浆期施氮量在161.0 kg hm-2处理和高于该施氮量处理的碳氮同化水平之间几乎没有差异,但都高于施氮量在57.5 kg hm-2处理的。不同土层氮分布结果表明,长期施氮量在161.0 kg hm-2和高于该施氮量各处理中,长期施入有机肥配施NPK肥处理残留最深,其次是长期施入化肥N的处理,长期秸秆还田配施N肥处理较浅。
基金National Natural Science Foundation of China(21806023)Natural Science Foundation of Hunan Province(2021JJ40199)+2 种基金Education Department Foundation of Hunan Province(20C0813)Hunan University of Science and Technology Fundamental Research FundsPostgraduate Scientific Research Innovation Project of Hunan Province(CX20240877)。
文摘Elemental doping is an effective strategy for tuning the band structure of graphite carbon nitride(CN)to enhance its photocatalytic performance.In this study,sodium(Na)and oxygen(O)co-doped carbon nitride(Na/O-CN_(x),x=1.0,2.0,3.0,4.0)was synthesized via solid-phase reaction of sodium citrate(NaCA)and pure CN powder in the Teflon-sealed autoclave under air conditions at 180℃.Surface area of Na/O-CN_(3.0) is measured to be 18.8 m^(2)/g,increasing by 60.7%compared to that of pure CN(11.7 m^(2)/g).Bandgap energy of Na/O-CN_(3.0) is determined to be 2.68 eV,marginally lower than that of pure CN(2.70 eV),thereby enhancing its capacity for sunlight absorption.Meanwhile,the incorporation of Na and O atoms into Na/O-CN_(x) is found to effectively reduce recombination rates of photogenerated electron-hole pairs.As a result,Na/O-CN_(x) samples exhibit markedly enhanced photocatalytic hydrogen evolution activity under visible light irradiation.Notably,the optimal Na/O-CN_(3.0) sample achieves a photocatalytic hydrogen production rate of 103.2μmol·g^(–1)·h^(–1),which is 8.2 times greater than that of pure CN(11.2μmol·g^(–1)·h^(–1)).Furthermore,a series of Na/O-CN_(x)-yO_(2)(y=0,20%,40%,60%,80%,100%)samples were prepared by modulating the oxygen content within reaction atmosphere.The catalytic performance evaluations reveal that the incorporation of both Na and O atoms in Na/O-CN_(3.0) enhances photocatalytic activity.This study also introduces novel methodologies for synthesis of metal atom-doped CN materials at lower temperature,highlighting the synergistic effect of Na and O atoms in photocatalytic hydrogen production of Na/O-CN_(x) samples.