期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
小样本条件下车削加工工艺碳排放多目标预测研究 被引量:1
1
作者 杨历夏 王宇钢 +2 位作者 唐祎晖 张阴硕 穆俊珍 《机床与液压》 北大核心 2025年第1期73-79,共7页
针对低碳耗的车削加工工艺数据采集困难以及因数据样本不足造成预测精度不高的问题,提出一种小样本条件下的车削加工工艺碳排放多目标预测方法。通过中心复合实验设计确定样本数量,在保留工艺有效信息的同时减少所需实验数据。基于反向... 针对低碳耗的车削加工工艺数据采集困难以及因数据样本不足造成预测精度不高的问题,提出一种小样本条件下的车削加工工艺碳排放多目标预测方法。通过中心复合实验设计确定样本数量,在保留工艺有效信息的同时减少所需实验数据。基于反向传播神经网络构建以碳排放和加工时间为目标的预测模型,并通过改进麻雀搜索算法对反向传播神经网络的参数寻优,最终得到加工工艺多目标预测模型。最后,通过加工实验验证在小样本条件下该方法的有效性。结果表明:基于ASSA-BP的模型能以较高精度预测车削加工工艺的碳排放量和加工时间;与传统BP神经网络方法相比,文中方法的碳排放量和加工时间的预测精度均得到有效提升。 展开更多
关键词 小样本条件 车削加工工艺 碳排放多目标预测 反向传播神经网络 改进麻雀搜索算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部