当前过量的CO_(2)排放已经引发了严重的气候危机,其中燃煤电厂的CO_(2)排放占据了较大比例,因此针对烟气碳捕集的研究成为关键。化学吸收法在碳捕集领因其成熟的技术,有望成为大规模碳减排应用的技术之一,但是较高的能耗和投资成本限制...当前过量的CO_(2)排放已经引发了严重的气候危机,其中燃煤电厂的CO_(2)排放占据了较大比例,因此针对烟气碳捕集的研究成为关键。化学吸收法在碳捕集领因其成熟的技术,有望成为大规模碳减排应用的技术之一,但是较高的能耗和投资成本限制了其进一步发展。传统的碳捕集与利用(Carbon Capture and Utilization,CCU)工艺中,捕集与利用2个步骤往往是分开进行的,前人们通过研发新型吸收剂、开发节能工艺等手段对捕集过程进行优化,同时开发更加高效安全的CO_(2)利用和封存技术。但是单独优化每个过程带来的能源效率回报不断减少。因此研究人员开始考虑综合碳捕集和利用技术的经济和能源效益,有学者提出使用电化学转化代替传统的吸收剂在解析塔内升温再生,将CO_(2)捕集和电化学转化利用整合在一起。基于传统的MEA湿法捕集工艺,利用Aspen Plus对基于有机胺的电解质来实现CO_(2)捕集与转化利用一体化(Integrated Carbon Capture and Utilization,ICCU)的方法建模分析,对两种工艺进行了技术经济分析。结果表明:相对于常规的CCU工艺,ICCU工艺的CO_(2)转化率和CO产量分别提升了6%和33%;同时ICCU工艺的能源效率(38.94%)也略高于CCU工艺(37.8%),伴随着电解能耗的相应增加,因此总体能源效益的改善并不显著。对电解温度进行灵敏度分析,发现当电解温度的升高,2种工艺的能源效率均呈下降趋势,但ICCU工艺的能效一直高于工艺;并且ICCU工艺的成本不断增加,当温度升高5℃,成本增加2%左右。在整体成本方面,ICCU工艺也具有一定的优势(6399.17元/t),并且系统能耗的下降是进一步降低成本的关键。综合来看,ICCU工艺在经济和能源效益都实现了一定的提高。展开更多
综合能源生产单元(integrated energy production unit,IEPU)通过耦合可再生能源制氢与火电碳捕集技术,制备易于储运的绿色燃料,在协调解决可再生能源消纳、碳利用及氢能储运等问题方面具有良好的应用前景。为定量评价IEPU的技术经济性...综合能源生产单元(integrated energy production unit,IEPU)通过耦合可再生能源制氢与火电碳捕集技术,制备易于储运的绿色燃料,在协调解决可再生能源消纳、碳利用及氢能储运等问题方面具有良好的应用前景。为定量评价IEPU的技术经济性与降碳潜力,该文通过构建IEPU工艺流程的仿真模型,模拟风电制氢、甲醇合成及压缩提纯等关键过程,建立多能流与物料流数据的全生命周期清单,进行碳足迹评价,并指出进一步碳减排的可行路径;通过对能量效率、电流密度等技术参数及风电价格、碳税等经济参数进行灵敏度分析,开展不同技术经济性背景下的经济性评估,探究IEPU的盈利条件。碳足迹评价表明,年产39万t绿色甲醇IEPU的全生命周期净碳减排量达5.88万t。技术经济性评估表明,在良好的技术经济性背景下,当风电售价降低至0.21元/(kW×h),基于IEPU生产的绿色甲醇成本可与传统甲醇生产工艺相当。展开更多
现阶段煤电仍是我国主要能源,装机总量大,短时间难以被完全替代,未来燃煤电厂高效清洁燃烧的技术标准是低碳排放。当前,双碳战略已上升到国家生态文明的高度,煤电亟需适应未来需求的碳捕集封存与利用(Carbon Capture Utilization and St...现阶段煤电仍是我国主要能源,装机总量大,短时间难以被完全替代,未来燃煤电厂高效清洁燃烧的技术标准是低碳排放。当前,双碳战略已上升到国家生态文明的高度,煤电亟需适应未来需求的碳捕集封存与利用(Carbon Capture Utilization and Storage,CCUS)技术。但国内已有超低排放电厂投运的CCUS设备普遍存在捕集成本高、产物利用量有限等问题,开发成本低、捕集产物可有效利用的CCUS技术是电力环保的共同需求。为此,提出煤电CCUS未来技术发展方向应该是烟气污染物一体化耦合控制,如应用等离子体氧化技术,首先氧化烟气中还原性污染物SO_(2)、NO等,而后以氨水为吸收剂协同脱硫脱硝脱碳,整体污染物脱除流程简单,副产品具有广阔的化工转化空间。继而提出稳定的氨源供给是实现上述一体化脱除的物质保障,构建燃煤电厂自给自足的制氨过程为煤电未来开发更丰富的产品线(氨能、肥料、化工品等)提供了可能。展开更多
燃煤电厂结合碳捕集、封存与利用技术(carbon capture,utilization and storage,CCUS)被视为未来实现全球2℃温升目标实施深度碳减排的必要技术路线。中国电源结构以煤电为主,评估现有燃煤电厂实施CCUS改造的技术可行性具有重要意义。...燃煤电厂结合碳捕集、封存与利用技术(carbon capture,utilization and storage,CCUS)被视为未来实现全球2℃温升目标实施深度碳减排的必要技术路线。中国电源结构以煤电为主,评估现有燃煤电厂实施CCUS改造的技术可行性具有重要意义。研究开发了适用于企业层面的燃煤电厂开展CCUS技术改造的评估方法,提出主要评估依据及核心参数,并以原神华集团有限责任公司燃煤电厂实际运行情况为样本,开展了燃煤电厂进行全流程CCUS改造的适宜性评估。研究显示:原神华集团燃煤机组中约55.89 GW机组(约占总装机容量的77%)具备增加碳捕集装置的基础条件,其中约44.14 GW机组(约占具备捕集条件总装机容量的79%)具备CO2运输、利用与封存改造(仅考虑CO2-EOR和CO2-EWR技术)的基本条件。总体来看,约60%总装机容量的机组具备实施全流程CCUS的初步可行性。本研究将为制定国家CCUS技术发展路线图以及企业制定中长期CCUS发展规划提供参考。展开更多
文摘当前过量的CO_(2)排放已经引发了严重的气候危机,其中燃煤电厂的CO_(2)排放占据了较大比例,因此针对烟气碳捕集的研究成为关键。化学吸收法在碳捕集领因其成熟的技术,有望成为大规模碳减排应用的技术之一,但是较高的能耗和投资成本限制了其进一步发展。传统的碳捕集与利用(Carbon Capture and Utilization,CCU)工艺中,捕集与利用2个步骤往往是分开进行的,前人们通过研发新型吸收剂、开发节能工艺等手段对捕集过程进行优化,同时开发更加高效安全的CO_(2)利用和封存技术。但是单独优化每个过程带来的能源效率回报不断减少。因此研究人员开始考虑综合碳捕集和利用技术的经济和能源效益,有学者提出使用电化学转化代替传统的吸收剂在解析塔内升温再生,将CO_(2)捕集和电化学转化利用整合在一起。基于传统的MEA湿法捕集工艺,利用Aspen Plus对基于有机胺的电解质来实现CO_(2)捕集与转化利用一体化(Integrated Carbon Capture and Utilization,ICCU)的方法建模分析,对两种工艺进行了技术经济分析。结果表明:相对于常规的CCU工艺,ICCU工艺的CO_(2)转化率和CO产量分别提升了6%和33%;同时ICCU工艺的能源效率(38.94%)也略高于CCU工艺(37.8%),伴随着电解能耗的相应增加,因此总体能源效益的改善并不显著。对电解温度进行灵敏度分析,发现当电解温度的升高,2种工艺的能源效率均呈下降趋势,但ICCU工艺的能效一直高于工艺;并且ICCU工艺的成本不断增加,当温度升高5℃,成本增加2%左右。在整体成本方面,ICCU工艺也具有一定的优势(6399.17元/t),并且系统能耗的下降是进一步降低成本的关键。综合来看,ICCU工艺在经济和能源效益都实现了一定的提高。
文摘综合能源生产单元(integrated energy production unit,IEPU)通过耦合可再生能源制氢与火电碳捕集技术,制备易于储运的绿色燃料,在协调解决可再生能源消纳、碳利用及氢能储运等问题方面具有良好的应用前景。为定量评价IEPU的技术经济性与降碳潜力,该文通过构建IEPU工艺流程的仿真模型,模拟风电制氢、甲醇合成及压缩提纯等关键过程,建立多能流与物料流数据的全生命周期清单,进行碳足迹评价,并指出进一步碳减排的可行路径;通过对能量效率、电流密度等技术参数及风电价格、碳税等经济参数进行灵敏度分析,开展不同技术经济性背景下的经济性评估,探究IEPU的盈利条件。碳足迹评价表明,年产39万t绿色甲醇IEPU的全生命周期净碳减排量达5.88万t。技术经济性评估表明,在良好的技术经济性背景下,当风电售价降低至0.21元/(kW×h),基于IEPU生产的绿色甲醇成本可与传统甲醇生产工艺相当。
文摘现阶段煤电仍是我国主要能源,装机总量大,短时间难以被完全替代,未来燃煤电厂高效清洁燃烧的技术标准是低碳排放。当前,双碳战略已上升到国家生态文明的高度,煤电亟需适应未来需求的碳捕集封存与利用(Carbon Capture Utilization and Storage,CCUS)技术。但国内已有超低排放电厂投运的CCUS设备普遍存在捕集成本高、产物利用量有限等问题,开发成本低、捕集产物可有效利用的CCUS技术是电力环保的共同需求。为此,提出煤电CCUS未来技术发展方向应该是烟气污染物一体化耦合控制,如应用等离子体氧化技术,首先氧化烟气中还原性污染物SO_(2)、NO等,而后以氨水为吸收剂协同脱硫脱硝脱碳,整体污染物脱除流程简单,副产品具有广阔的化工转化空间。继而提出稳定的氨源供给是实现上述一体化脱除的物质保障,构建燃煤电厂自给自足的制氨过程为煤电未来开发更丰富的产品线(氨能、肥料、化工品等)提供了可能。