Bauxite residue is a highly alkaline material generated from the production of alumina in which bauxite is dissolved in caustic soda.Approximately 4.4 billion tons of bauxite residues are either stockpiled or landfill...Bauxite residue is a highly alkaline material generated from the production of alumina in which bauxite is dissolved in caustic soda.Approximately 4.4 billion tons of bauxite residues are either stockpiled or landfilled,creating environmental risks either from the generation of dust or migration of filtrates.High alkalinity is the critical factor restricting complete utilization of bauxite residues,whilst the application of alkaline regulation agents is costly and difficult to apply widely.For now,current industrial wastes,such as waste acid,ammonia nitrogen wastewater,waste gypsum and biomass,have become major problems restricting the development of the social economy.Regulation of bauxite residues alkalinity by industrial waste was proposed to achieve‘waste control by waste’with good economic and ecological benefits.This review will focus on the origin and transformation of alkalinity in bauxite residues using typical industrial waste.It will propose key research directions with an emphasis on alkaline regulation by industrial waste,whilst also providing a scientific reference point for their potential use as amendments to enhance soil formation and establish vegetation on bauxite residue disposal areas(BRDAs)following large-scale disposal.展开更多
Aiming at alkaline problem of bauxite residue,this work focused variation of alkaline characteristics in bauxite residue through phosphogypsum treatment.The results demonstrated that the pH of bauxite residue reduced ...Aiming at alkaline problem of bauxite residue,this work focused variation of alkaline characteristics in bauxite residue through phosphogypsum treatment.The results demonstrated that the pH of bauxite residue reduced from initial 10.83 to 8.70 when 1.50 wt%phosphogypsum was added for 91 d.The removal rates of free alkali and exchangeable sodium were 97.94%and 75.87%,respectively.Meanwhile,significant positive correlations(P<0.05)existed between pH and free alkali,exchangeable sodium.The effect of free alkali composition was CO3^2–>OH^–>AlO2^–>HCO3^–.In addition,alkaline phase decreased from 52.81%to 48.58%and gypsum stably presented in bauxite residue which continuously provided Ca^2+to inhibit dissolution of combined alkali.Furthermore,phosphogypsum promoted formation of macroaggregate structure,increased Ca^2+,decreased Na+and Al^3+on the surface of bauxite residue significantly,ultimately promoting soil formation in bauxite residue.展开更多
Bauxite residue deposit area(BRDA)is a typical abandoned mining wasteland representing extreme hostile environment with increased alkalinity.Microbially-driven neutralization of bauxite residue,based on the microbial ...Bauxite residue deposit area(BRDA)is a typical abandoned mining wasteland representing extreme hostile environment with increased alkalinity.Microbially-driven neutralization of bauxite residue,based on the microbial acid producing metabolisms,is a novel strategy for achieving rapid pH neutralization and thus improving its environmental outcomes.The hypothesis was that these extreme conditions promote microbial communities which are capable of novel ecologically relevant functions.Several alkaliphilic acid producing bacteria were isolated in this study.One strain was selected for its superior growth pattern and acid metabolism(termed EEEL02).Based on the phylogenetic analysis,this strain was identified as Bacillus thuringiensis.The optimized fermentation conditions were as follows:pH 10;NaCl concentration 5%;temperature 25℃;EEEL02 preferred glucose and peptone as carbon and nitrogen sources,respectively.Based on optimal fermentation conditions,EEEL02 induced a significant pH reduction from 10.26 to 5.62 in 5-day incubation test.Acetic acid,propionic acid and CO2(g)were the major acid metabolites of fermentation,suggesting that the pH reduction in bauxite residue may be caused by acid neutralization derived from microbial metabolism.This finding provided the basis of a novel strategy for achieving rapid pH neutralization of bauxite residue.展开更多
Bauxite residue is a highly alkaline waste product from refining bauxite ore.Bioremediation driven by microbial activities has been evidently effective in lowering the alkalinity of bauxite residues,which is critical ...Bauxite residue is a highly alkaline waste product from refining bauxite ore.Bioremediation driven by microbial activities has been evidently effective in lowering the alkalinity of bauxite residues,which is critical to the initiation of pedogenesis under engineered conditions.The present study investigated the changes of alkalinity and aggregation of bauxite residue at different depth in response to the colonization of Penicillium oxalicum in columns.The results demonstrated that the inoculation of P.oxalicum decreased the residue’s pH to about 7 after 30 d only at the surface layer,which was exposed to aerobic conditions.The formation of aggregates was improved overall in the organic matter treated bauxite residue.However,the EC of bauxite residue increased with time under the incubation condition,probably due to accelerated hydrolysis of sodium-rich minerals.The inoculation of P.oxalicum had no effects on urease activity,but increased cellulose enzyme activity at surface layer only.展开更多
Neutralization of alkaline properties of bauxite residue(BR)by using organic acid and gypsum additions may effectively improve electrochemical properties and alleviate physicochemical barriers to ecological rehabilita...Neutralization of alkaline properties of bauxite residue(BR)by using organic acid and gypsum additions may effectively improve electrochemical properties and alleviate physicochemical barriers to ecological rehabilitation.Mineral acids,citric acid and hybrid acid–gypsum additions were compared for their potential to transform and improve zeta potential,isoelectric point(IEP),surface protonation and active alkaline-OH groups,which are critical factors for further improvement of physicochemical and biological properties later.Isoelectric points of untransformed bauxite residue and six transformed derivatives were determined by using electroacoustic methods.Electrochemical characteristics were significantly improved by the amendments used,resulting in reduced IEP and-OH groups and decreased surface protonation for transformed residues.XRD results revealed that the primary alkaline minerals of cancrinite,calcite and grossular were transformed by the treatments.The treatments of citric acid and gypsum promoted the dissolution of cancrinite.From the SEM examination,citric acid and gypsum treatments contributed to the reduction in IEP and redistribution of-OH groups on particle surfaces.The collective evidence suggested that citric acid and gypsum amendments may be used firstly to rapidly amend bauxite residues for alleviating the caustic conditions prior to the consideration of soil formation in bauxite residue.展开更多
Alkaline anions,include CO3^2–,HCO3^–,Al(OH)4^–,OH^–,continuously released from bauxite residue(BR),will cause a potential disastrous impact on surrounding environment.The composition variation of alkaline anions,...Alkaline anions,include CO3^2–,HCO3^–,Al(OH)4^–,OH^–,continuously released from bauxite residue(BR),will cause a potential disastrous impact on surrounding environment.The composition variation of alkaline anions,alkaline phase transformation pathway,and micro-morphological transition characteristics during the gypsum addition were investigated in an attempt to understand alkalinity stabilization behavior.Results demonstrated that alkaline anions stabilization degree in leachates can reach approximately 96.29%,whilst pH and alkalinity were reduced from 10.47 to 8.15,47.39 mmol/L to 2 mmol/L,respectively.During the alkalinity stabilization,chemical regulation behavior plays significant role in driving the co-precipitation reaction among the critical alkaline anions(CO3^2–,HCO3^–,Al(OH)4^–,OH^–),with calcium carbonate(CaCO3))being the most prevalent among the transformed alkaline phases.In addition,XRD and SEM-EDX analyses of the solid phase revealed that physical immobilization behavior would also influence the stability of soluble alkali and chemical bonded alkali due to released Ca^2+from gypsum which aggregated the clay particles and stabilized them into coarse particles with a blocky structure.These findings will be beneficial for effectively regulating strong alkalinity of BR.展开更多
基金Projects(41877551,41842020)supported by the National Natural Science Foundation of ChinaProject(201509048)supported by the Environmental Protection’s Special Scientific Research for Chinese Public Welfare Industry
文摘Bauxite residue is a highly alkaline material generated from the production of alumina in which bauxite is dissolved in caustic soda.Approximately 4.4 billion tons of bauxite residues are either stockpiled or landfilled,creating environmental risks either from the generation of dust or migration of filtrates.High alkalinity is the critical factor restricting complete utilization of bauxite residues,whilst the application of alkaline regulation agents is costly and difficult to apply widely.For now,current industrial wastes,such as waste acid,ammonia nitrogen wastewater,waste gypsum and biomass,have become major problems restricting the development of the social economy.Regulation of bauxite residues alkalinity by industrial waste was proposed to achieve‘waste control by waste’with good economic and ecological benefits.This review will focus on the origin and transformation of alkalinity in bauxite residues using typical industrial waste.It will propose key research directions with an emphasis on alkaline regulation by industrial waste,whilst also providing a scientific reference point for their potential use as amendments to enhance soil formation and establish vegetation on bauxite residue disposal areas(BRDAs)following large-scale disposal.
基金Projects(41877511,41842020)supported by the National Natural Science Foundation of China
文摘Aiming at alkaline problem of bauxite residue,this work focused variation of alkaline characteristics in bauxite residue through phosphogypsum treatment.The results demonstrated that the pH of bauxite residue reduced from initial 10.83 to 8.70 when 1.50 wt%phosphogypsum was added for 91 d.The removal rates of free alkali and exchangeable sodium were 97.94%and 75.87%,respectively.Meanwhile,significant positive correlations(P<0.05)existed between pH and free alkali,exchangeable sodium.The effect of free alkali composition was CO3^2–>OH^–>AlO2^–>HCO3^–.In addition,alkaline phase decreased from 52.81%to 48.58%and gypsum stably presented in bauxite residue which continuously provided Ca^2+to inhibit dissolution of combined alkali.Furthermore,phosphogypsum promoted formation of macroaggregate structure,increased Ca^2+,decreased Na+and Al^3+on the surface of bauxite residue significantly,ultimately promoting soil formation in bauxite residue.
基金Projects(41877511,41842020)supported by the National Natural Science Foundation of ChinaProject(502221703)supported by the Innovative Project of Independent Exploration of Central South University,China
文摘Bauxite residue deposit area(BRDA)is a typical abandoned mining wasteland representing extreme hostile environment with increased alkalinity.Microbially-driven neutralization of bauxite residue,based on the microbial acid producing metabolisms,is a novel strategy for achieving rapid pH neutralization and thus improving its environmental outcomes.The hypothesis was that these extreme conditions promote microbial communities which are capable of novel ecologically relevant functions.Several alkaliphilic acid producing bacteria were isolated in this study.One strain was selected for its superior growth pattern and acid metabolism(termed EEEL02).Based on the phylogenetic analysis,this strain was identified as Bacillus thuringiensis.The optimized fermentation conditions were as follows:pH 10;NaCl concentration 5%;temperature 25℃;EEEL02 preferred glucose and peptone as carbon and nitrogen sources,respectively.Based on optimal fermentation conditions,EEEL02 induced a significant pH reduction from 10.26 to 5.62 in 5-day incubation test.Acetic acid,propionic acid and CO2(g)were the major acid metabolites of fermentation,suggesting that the pH reduction in bauxite residue may be caused by acid neutralization derived from microbial metabolism.This finding provided the basis of a novel strategy for achieving rapid pH neutralization of bauxite residue.
基金Projects(41877511,41842020)supported by the National Natural Science Foundation of ChinaProject(2018zzts421)supported by the Innovative Project of Independent Exploration of Central South University,China
文摘Bauxite residue is a highly alkaline waste product from refining bauxite ore.Bioremediation driven by microbial activities has been evidently effective in lowering the alkalinity of bauxite residues,which is critical to the initiation of pedogenesis under engineered conditions.The present study investigated the changes of alkalinity and aggregation of bauxite residue at different depth in response to the colonization of Penicillium oxalicum in columns.The results demonstrated that the inoculation of P.oxalicum decreased the residue’s pH to about 7 after 30 d only at the surface layer,which was exposed to aerobic conditions.The formation of aggregates was improved overall in the organic matter treated bauxite residue.However,the EC of bauxite residue increased with time under the incubation condition,probably due to accelerated hydrolysis of sodium-rich minerals.The inoculation of P.oxalicum had no effects on urease activity,but increased cellulose enzyme activity at surface layer only.
基金Projects(41877511,41842020)supported by the National Natural Science Foundation of China
文摘Neutralization of alkaline properties of bauxite residue(BR)by using organic acid and gypsum additions may effectively improve electrochemical properties and alleviate physicochemical barriers to ecological rehabilitation.Mineral acids,citric acid and hybrid acid–gypsum additions were compared for their potential to transform and improve zeta potential,isoelectric point(IEP),surface protonation and active alkaline-OH groups,which are critical factors for further improvement of physicochemical and biological properties later.Isoelectric points of untransformed bauxite residue and six transformed derivatives were determined by using electroacoustic methods.Electrochemical characteristics were significantly improved by the amendments used,resulting in reduced IEP and-OH groups and decreased surface protonation for transformed residues.XRD results revealed that the primary alkaline minerals of cancrinite,calcite and grossular were transformed by the treatments.The treatments of citric acid and gypsum promoted the dissolution of cancrinite.From the SEM examination,citric acid and gypsum treatments contributed to the reduction in IEP and redistribution of-OH groups on particle surfaces.The collective evidence suggested that citric acid and gypsum amendments may be used firstly to rapidly amend bauxite residues for alleviating the caustic conditions prior to the consideration of soil formation in bauxite residue.
基金Project(41877511)supported by the National Natural Science Foundation of ChinaProject(201509048)supported by the Environmental Protection’s Special Scientific Research for the Chinese Public Welfare Industry,China
文摘Alkaline anions,include CO3^2–,HCO3^–,Al(OH)4^–,OH^–,continuously released from bauxite residue(BR),will cause a potential disastrous impact on surrounding environment.The composition variation of alkaline anions,alkaline phase transformation pathway,and micro-morphological transition characteristics during the gypsum addition were investigated in an attempt to understand alkalinity stabilization behavior.Results demonstrated that alkaline anions stabilization degree in leachates can reach approximately 96.29%,whilst pH and alkalinity were reduced from 10.47 to 8.15,47.39 mmol/L to 2 mmol/L,respectively.During the alkalinity stabilization,chemical regulation behavior plays significant role in driving the co-precipitation reaction among the critical alkaline anions(CO3^2–,HCO3^–,Al(OH)4^–,OH^–),with calcium carbonate(CaCO3))being the most prevalent among the transformed alkaline phases.In addition,XRD and SEM-EDX analyses of the solid phase revealed that physical immobilization behavior would also influence the stability of soluble alkali and chemical bonded alkali due to released Ca^2+from gypsum which aggregated the clay particles and stabilized them into coarse particles with a blocky structure.These findings will be beneficial for effectively regulating strong alkalinity of BR.