Technological trends in the automotive industry toward a software-defined and autonomous vehicle require a reassessment of today’s vehicle development process.The validation process soaringly shapes after starting wi...Technological trends in the automotive industry toward a software-defined and autonomous vehicle require a reassessment of today’s vehicle development process.The validation process soaringly shapes after starting with hardware-in-the-loop testing of control units and reproducing real-world maneuvers and physical interaction chains.Here,the road-to-rig approach offers a vast potential to reduce validation time and costs significantly.The present research study investigates the maneuver reproduction of drivability phenomena at a powertrain test bed.Although drivability phenomena occur in the frequency range of most up to 30∙Hz,the design and characteristics substantially impact the test setup’s validity.By utilization of modal analysis,the influence of the test bed on the mechanical characteristic is shown.Furthermore,the sensitivity of the natural modes of each component,from either specimen or test bed site,is determined.In contrast,the uncertainty of the deployed measurement equipment also affects the validity.Instead of an accuracy class indication,we apply the ISO/IEC Guide 98 to the measurement equipment and the test bed setup to increase the fidelity of the validation task.In conclusion,the present paper contributes to a traceable validity determination of the road-to-rig approach by providing objective metrics and methods.展开更多
In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections...In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections)and the uncertainty of the target appearing/disappearing in the field of view.These difficulties can make the establishment or maintenance of the radiation source target track invalid.By incorporating the elevation information of the passive sensor into the automatic bearings-only tracking(BOT)and consolidating these uncertainties under the framework of random finite set(RFS),a novel approach for tracking maritime radiation source target with intermittent measurement was proposed.Under the RFS framework,the target state was represented as a set that can take on either an empty set or a singleton; meanwhile,the measurement uncertainty was modeled as a Bernoulli random finite set.Moreover,the elevation information of the sensor platform was introduced to ensure observability of passive measurements and obtain the unique target localization.Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source and demonstrate the superiority of the proposed approach in comparison with the traditional integrated probabilistic data association(IPDA)method.The tracking performance under different conditions,particularly involving different existence probabilities and different appearance durations of the target,indicates that the method to solve our problem is robust and effective.展开更多
Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual charac...Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual characteristics of the project. Considering a comprehensive range of intact rock properties and discontinuous structures of rock mass, twelve main factors influencing the evaluation blastability of rock mass were taken into account in the UM model, and the blastability evaluation index system of rock mass was constructed. The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively. Then, the UM function of each evaluation index was obtained based on the initial data for the analysis of the blastability of six rock mass at a highway improvement cutting site in North Wales. The index weights of the factors were calculated by entropy theory, and credible degree identification (CDI) criteria were established according to the UM theory. The results of rock mass blastability evaluation were obtained by the CDI criteria. The results show that the UM model assessment results agree well with the actual records, and are consistent with those of the fuzzy sets evaluation method. Meanwhile, the unascertained superiority degree of rock mass blastability of samples S1-$6 which can be calculated by scoring criteria are 3.428 5, 3.453 3, 4.058 7, 3.675 9, 3.516 7 and 3.289 7, respectively. Furthermore, the proposed method can take into account large amount of uncertain information in blastability evaluation, which can provide an effective, credible and feasible way for estimating the blastability of rock mass. Engineering practices show that it can complete the blastability assessment systematically and scientifically without any assumption by the proposed model, which can be applied to practical engineering.展开更多
Phosphorus is an essential element in agricultural production and chemical industry. However, since the risk of casualties and economic loss by mining accidents, the application of clean and safe production in phospho...Phosphorus is an essential element in agricultural production and chemical industry. However, since the risk of casualties and economic loss by mining accidents, the application of clean and safe production in phosphorus mines encounters great challenges. For this purpose, a man-machine-environment system composed of evaluation indexes was established, and the grading standards of indexes were defined. Firstly, the measurements of 39 qualitative indexes were obtained through the survey data. According to the measured values of 31 quantitative indexes, the measurements of quantitative indexes were calculated by linear measurement function(LM) and other three functions. Then the singleindex measurement evaluation matrixes were established. Secondly, the entropy weight method was used to determine the weights of each index directly. The analytic hierarchy process(AHP) was also applied to calculate the weights of index and index factor hierarchies after the established hierarchical model. The weights of system hierarchies were given by the grid-based fuzzy Borda method(GFB). The comprehensive weights were determined by the combination method of AHP and GFB(CAG). Furthermore, the multi-index comprehensive measurement evaluation vectors were obtained.Thirdly, the vectors were evaluated by the credible degree recognition(CDR) and the maximum membership(TMM)criteria. Based on the above functions, methods, and criteria, 16 combination evaluation methods were recommended.Finally, the clean and safe production grade of Kaiyang phosphate mine in China was evaluated. The results show that the LM-CAG-CDR is the most reasonable method, which can not only determine the clean and safe production grade of phosphorus mines, but also improve the development level of clean and safe mining of phosphorus mines for guidance.In addition, some beneficial suggestions and measures were also proposed to advance the clean and safe production grade of Kaiyang phosphorus mine.展开更多
Measurement uncertainty plays an important role in laser tracking measurement analyses. In the present work, the guides to the expression of uncertainty in measurement(GUM) uncertainty framework(GUF) and its supplemen...Measurement uncertainty plays an important role in laser tracking measurement analyses. In the present work, the guides to the expression of uncertainty in measurement(GUM) uncertainty framework(GUF) and its supplement, the Monte Carlo method, were used to estimate the uncertainty of task-specific laser tracker measurements. First, the sources of error in laser tracker measurement were analyzed in detail, including instruments, measuring network fusion, measurement strategies, measurement process factors(such as the operator), measurement environment, and task-specific data processing. Second, the GUM and Monte Carlo methods and their application to laser tracker measurement were presented. Finally, a case study involving the uncertainty estimation of a cylindricity measurement process using the GUF and Monte Carlo methods was illustrated. The expanded uncertainty results(at 95% confidence levels) obtained with the Monte Carlo method are 0.069 mm(least-squares criterion) and 0.062 mm(minimum zone criterion), respectively, while with the GUM uncertainty framework, none but the result of least-squares criterion can be got, which is 0.071 mm. Thus, the GUM uncertainty framework slightly underestimates the overall uncertainty by 10%. The results demonstrate that the two methods have different characteristics in task-specific uncertainty evaluations of laser tracker measurements. The results indicate that the Monte Carlo method is a practical tool for applying the principle of propagation of distributions and does not depend on the assumptions and limitations required by the law of propagation of uncertainties(GUF). These features of the Monte Carlo method reduce the risk of an unreliable measurement of uncertainty estimation, particularly in cases of complicated measurement models, without the need to evaluate partial derivatives. In addition, the impact of sampling strategy and evaluation method on the uncertainty of the measurement results can also be taken into account with Monte Carlo method, which plays a guiding role in measurement planning.展开更多
An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main f...An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main factors influencing the selection of mining method were taken into account,and the comprehensive evaluation index system of mining method selection was constructed.The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively.New measurement standards were constructed.Then,the unascertained measurement function of each evaluation index was established.The index weights of the factors were calculated by entropy theory,and credible degree recognition criteria were established according to the unascertained measurement theory.The results of mining method evaluation were obtained using the credible degree criteria,thus the best underground mining method was determined.Furthermore,this model was employed for the comprehensive evaluation and selection of the chosen standard mining methods in Xinli Gold Mine in Sanshandao of China.The results show that the relative superiority degrees of mining methods can be calculated using the unascertained measurement optimization model,so the optimal method can be easily determined.Meanwhile,the proposed method can take into account large amount of uncertain information in mining method selection,which can provide an effective way for selecting the optimal underground mining method.展开更多
Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ...Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles.展开更多
One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term produ...One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term production scheduling(LTPS)of the open-pit mines.Deterministic and uncertainty-based approaches are identified as the main strategies,which have been widely used to cope with this problem.Within the last few years,many researchers have highly considered a new computational type,which is less costly,i.e.,meta-heuristic methods,so as to solve the mine design and production scheduling problem.Although the optimality of the final solution cannot be guaranteed,they are able to produce sufficiently good solutions with relatively less computational costs.In the present paper,two hybrid models between augmented Lagrangian relaxation(ALR)and a particle swarm optimization(PSO)and ALR and bat algorithm(BA)are suggested so that the LTPS problem is solved under the condition of grade uncertainty.It is suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the convergence.Moreover,the Lagrangian coefficients are updated by using PSO and BA.The presented models have been compared with the outcomes of the ALR-genetic algorithm,the ALR-traditional sub-gradient method,and the conventional method without using the Lagrangian approach.The results indicated that the ALR is considered a more efficient approach which can solve a large-scale problem and make a valid solution.Hence,it is more effectual than the conventional method.Furthermore,the time and cost of computation are diminished by the proposed hybrid strategies.The CPU time using the ALR-BA method is about 7.4%higher than the ALR-PSO approach.展开更多
Study of fuzzy entropy and similarity measure on intuitionistic fuzzy sets (IFSs) was proposed and analyzed. Unlike fuzzy set, IFSs contain uncertainty named hesitance, which is contained in fuzzy membership function ...Study of fuzzy entropy and similarity measure on intuitionistic fuzzy sets (IFSs) was proposed and analyzed. Unlike fuzzy set, IFSs contain uncertainty named hesitance, which is contained in fuzzy membership function itself. Hence, designing fuzzy entropy is not easy because of many entropy definitions. By considering different fuzzy entropy definitions, fuzzy entropy on IFSs is designed and discussed. Similarity measure was also presented and its usefulness was verified to evaluate degree of similarity.展开更多
Reasons and realities such as being non-linear of dynamical equations,being lightweight and unstable nature of quadrotor,along with internal and external disturbances and parametric uncertainties,have caused that the ...Reasons and realities such as being non-linear of dynamical equations,being lightweight and unstable nature of quadrotor,along with internal and external disturbances and parametric uncertainties,have caused that the controller design for these quadrotors is considered the challenging issue of the day.In this work,an adaptive sliding mode controller based on neural network is proposed to control the altitude of a quadrotor.The error and error derivative of the altitude of a quadrotor are the inputs of neural network and altitude sliding surface variable is its output.Neural network estimates the sliding surface variable adaptively according to the conditions of quadrotor and sets the altitude of a quadrotor equal to the desired value.The proposed controller stability has been proven by Lyapunov theory and it is shown that all system states reach to sliding surface and are remaining in it.The superiority of the proposed control method has been proven by comparison and simulation results.展开更多
Gaussian process(GP)has fewer parameters,simple model and output of probabilistic sense,when compared with the methods such as support vector machines.Selection of the hyper-parameters is critical to the performance o...Gaussian process(GP)has fewer parameters,simple model and output of probabilistic sense,when compared with the methods such as support vector machines.Selection of the hyper-parameters is critical to the performance of Gaussian process model.However,the common-used algorithm has the disadvantages of difficult determination of iteration steps,over-dependence of optimization effect on initial values,and easily falling into local optimum.To solve this problem,a method combining the Gaussian process with memetic algorithm was proposed.Based on this method,memetic algorithm was used to search the optimal hyper parameters of Gaussian process regression(GPR)model in the training process and form MA-GPR algorithms,and then the model was used to predict and test the results.When used in the marine long-range precision strike system(LPSS)battle effectiveness evaluation,the proposed MA-GPR model significantly improved the prediction accuracy,compared with the conjugate gradient method and the genetic algorithm optimization process.展开更多
The cost and safety of geotechnical engineering are highly depending on the accuracy of soil shear strength parameters.There are three methods often used to estimate soil shear strength parameters,i.e.,moment method,3...The cost and safety of geotechnical engineering are highly depending on the accuracy of soil shear strength parameters.There are three methods often used to estimate soil shear strength parameters,i.e.,moment method,3-sigma rule and linear regression method.In this study,the accuracy of these three methods is compared.Traditional linear regression method(LRM)can only offer the mean of shear strength parameters.Some engineers misuse the standard error of shear strength indexes as the standard deviations.Such misuse may highly underestimate the uncertainty and induce high risk to the geotechnical design.A modified LRM is proposed to determine both the mean and variance of shear strength parameters.The moment method,three-sigma rule and LRM are used to analyze the tri-axial test data in Xiaolangdi Hydraulic Project and three numerical shear strength tests.The results demonstrate that:1)The modified LRM can offer the most accurate estimation to shear strength parameters;2)A dimensionless formula is much preferred in LRM rather than a dimensional formula.The stress ratio formula is much better than stress relation in the shear strength parameter analysis.The proposed method is applicable to shear strength parameter analysis for tri-axial test data,direct shear test and the un-drained shear strength test of stratified clay.展开更多
In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element m...In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element model.In the new method,the finite element model was replaced by the multi-output support vector regression machine(MSVR).The interval variables of the measured frequency were sampled by Latin hypercube sampling method.The samples of frequency were regarded as the inputs of the trained MSVR.The outputs of MSVR were the target values of design parameters.The steel structure of National Aquatic Center for Beijing Olympic Games was introduced as a case for finite element model updating.The results show that the proposed method can avoid solving the problem of complicated calculation.Both the estimated values and associated uncertainties of the structure parameters can be obtained by the method.The static and dynamic characteristics of the updated finite element model are in good agreement with the measured data.展开更多
Random dynamic responses caused by the uncertainty of structural parameters of the coupled train-ballasted track-subgrade system under train loading can pose safety concerns to the train operation.This paper introduce...Random dynamic responses caused by the uncertainty of structural parameters of the coupled train-ballasted track-subgrade system under train loading can pose safety concerns to the train operation.This paper introduced a computational model for analyzing probabilistic dynamic responses of three-dimensional(3D)coupled train-ballasted track-subgrade system(TBTSS),where the coupling effects of uncertain rail irregularities,stiffness and damping properties of ballast and subgrade layers were simultaneously considered.The number theoretical method(NTM)was employed to design discrete points for the multi-dimensional stochastic parameters.The time-histories of stochastic dynamic vibrations of the TBSS with systematically uncertain structural parameters were calculated accurately and efficiently by employing the probability density evolution method(PDEM).The model-predicted results were consistent with those by the Monte Carlo simulation method.A sensitivity study was performed to assess the relative importance of those uncertain structural parameters,based on which a case study was presented to explore the stochastic probability evolution mechanism of such train-ballasted track-subgrade system.展开更多
The accurate measurement of kinematic parameters in satellite separation tests has great significance in evaluating separation performance. A novel study is made on the measuring accuracy of monocular and binocular, w...The accurate measurement of kinematic parameters in satellite separation tests has great significance in evaluating separation performance. A novel study is made on the measuring accuracy of monocular and binocular, which are the two main vision measurement methods used for kinematic parameters. As satellite separation process is transient and high-dynamic, it will bring more extraction errors to the binocular. Based on the design approach of intersection measure and variance ratio, the monocular method reflects higher precision, simpler structure and easier calibration for level satellite separation. In ground separation tests, a high-speed monocular system is developed to gain and analyze twelve kinematic parameters of a small satellite. Research shows that this monocular method can be widely applied for its high precision, with position accuracy of 0.5 mm, speed accuracy of 5 mm/s, and angular velocity accuracy of 1 (°)/s.展开更多
文摘Technological trends in the automotive industry toward a software-defined and autonomous vehicle require a reassessment of today’s vehicle development process.The validation process soaringly shapes after starting with hardware-in-the-loop testing of control units and reproducing real-world maneuvers and physical interaction chains.Here,the road-to-rig approach offers a vast potential to reduce validation time and costs significantly.The present research study investigates the maneuver reproduction of drivability phenomena at a powertrain test bed.Although drivability phenomena occur in the frequency range of most up to 30∙Hz,the design and characteristics substantially impact the test setup’s validity.By utilization of modal analysis,the influence of the test bed on the mechanical characteristic is shown.Furthermore,the sensitivity of the natural modes of each component,from either specimen or test bed site,is determined.In contrast,the uncertainty of the deployed measurement equipment also affects the validity.Instead of an accuracy class indication,we apply the ISO/IEC Guide 98 to the measurement equipment and the test bed setup to increase the fidelity of the validation task.In conclusion,the present paper contributes to a traceable validity determination of the road-to-rig approach by providing objective metrics and methods.
基金Project(61101186)supported by the National Natural Science Foundation of China
文摘In the tracking problem for the maritime radiation source by a passive sensor,there are three main difficulties,i.e.,the poor observability of the radiation source,the detection uncertainty(false and missed detections)and the uncertainty of the target appearing/disappearing in the field of view.These difficulties can make the establishment or maintenance of the radiation source target track invalid.By incorporating the elevation information of the passive sensor into the automatic bearings-only tracking(BOT)and consolidating these uncertainties under the framework of random finite set(RFS),a novel approach for tracking maritime radiation source target with intermittent measurement was proposed.Under the RFS framework,the target state was represented as a set that can take on either an empty set or a singleton; meanwhile,the measurement uncertainty was modeled as a Bernoulli random finite set.Moreover,the elevation information of the sensor platform was introduced to ensure observability of passive measurements and obtain the unique target localization.Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source and demonstrate the superiority of the proposed approach in comparison with the traditional integrated probabilistic data association(IPDA)method.The tracking performance under different conditions,particularly involving different existence probabilities and different appearance durations of the target,indicates that the method to solve our problem is robust and effective.
基金Project(50934006) supported by the National Natural Science Foundation of ChinaProject(2010CB732004) supported by the National Basic Research Program of China+1 种基金Project(2009ssxt230) supported by the Central South University Innovation Fund,ChinaProject(CX2011B119) supported by the Graduated Students’Research and Innovation Fund of Hunan Province,China
文摘Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual characteristics of the project. Considering a comprehensive range of intact rock properties and discontinuous structures of rock mass, twelve main factors influencing the evaluation blastability of rock mass were taken into account in the UM model, and the blastability evaluation index system of rock mass was constructed. The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively. Then, the UM function of each evaluation index was obtained based on the initial data for the analysis of the blastability of six rock mass at a highway improvement cutting site in North Wales. The index weights of the factors were calculated by entropy theory, and credible degree identification (CDI) criteria were established according to the UM theory. The results of rock mass blastability evaluation were obtained by the CDI criteria. The results show that the UM model assessment results agree well with the actual records, and are consistent with those of the fuzzy sets evaluation method. Meanwhile, the unascertained superiority degree of rock mass blastability of samples S1-$6 which can be calculated by scoring criteria are 3.428 5, 3.453 3, 4.058 7, 3.675 9, 3.516 7 and 3.289 7, respectively. Furthermore, the proposed method can take into account large amount of uncertain information in blastability evaluation, which can provide an effective, credible and feasible way for estimating the blastability of rock mass. Engineering practices show that it can complete the blastability assessment systematically and scientifically without any assumption by the proposed model, which can be applied to practical engineering.
基金Project(51974362) supported by the National Natural Science Foundation of ChinaProject(2282020cxqd055) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2021-QYC-10050-25631) supported by the Department of Emergency Management of Hunan Province,China。
文摘Phosphorus is an essential element in agricultural production and chemical industry. However, since the risk of casualties and economic loss by mining accidents, the application of clean and safe production in phosphorus mines encounters great challenges. For this purpose, a man-machine-environment system composed of evaluation indexes was established, and the grading standards of indexes were defined. Firstly, the measurements of 39 qualitative indexes were obtained through the survey data. According to the measured values of 31 quantitative indexes, the measurements of quantitative indexes were calculated by linear measurement function(LM) and other three functions. Then the singleindex measurement evaluation matrixes were established. Secondly, the entropy weight method was used to determine the weights of each index directly. The analytic hierarchy process(AHP) was also applied to calculate the weights of index and index factor hierarchies after the established hierarchical model. The weights of system hierarchies were given by the grid-based fuzzy Borda method(GFB). The comprehensive weights were determined by the combination method of AHP and GFB(CAG). Furthermore, the multi-index comprehensive measurement evaluation vectors were obtained.Thirdly, the vectors were evaluated by the credible degree recognition(CDR) and the maximum membership(TMM)criteria. Based on the above functions, methods, and criteria, 16 combination evaluation methods were recommended.Finally, the clean and safe production grade of Kaiyang phosphate mine in China was evaluated. The results show that the LM-CAG-CDR is the most reasonable method, which can not only determine the clean and safe production grade of phosphorus mines, but also improve the development level of clean and safe mining of phosphorus mines for guidance.In addition, some beneficial suggestions and measures were also proposed to advance the clean and safe production grade of Kaiyang phosphorus mine.
基金Project(51318010402)supported by General Armament Department Pre-Research Program of China
文摘Measurement uncertainty plays an important role in laser tracking measurement analyses. In the present work, the guides to the expression of uncertainty in measurement(GUM) uncertainty framework(GUF) and its supplement, the Monte Carlo method, were used to estimate the uncertainty of task-specific laser tracker measurements. First, the sources of error in laser tracker measurement were analyzed in detail, including instruments, measuring network fusion, measurement strategies, measurement process factors(such as the operator), measurement environment, and task-specific data processing. Second, the GUM and Monte Carlo methods and their application to laser tracker measurement were presented. Finally, a case study involving the uncertainty estimation of a cylindricity measurement process using the GUF and Monte Carlo methods was illustrated. The expanded uncertainty results(at 95% confidence levels) obtained with the Monte Carlo method are 0.069 mm(least-squares criterion) and 0.062 mm(minimum zone criterion), respectively, while with the GUM uncertainty framework, none but the result of least-squares criterion can be got, which is 0.071 mm. Thus, the GUM uncertainty framework slightly underestimates the overall uncertainty by 10%. The results demonstrate that the two methods have different characteristics in task-specific uncertainty evaluations of laser tracker measurements. The results indicate that the Monte Carlo method is a practical tool for applying the principle of propagation of distributions and does not depend on the assumptions and limitations required by the law of propagation of uncertainties(GUF). These features of the Monte Carlo method reduce the risk of an unreliable measurement of uncertainty estimation, particularly in cases of complicated measurement models, without the need to evaluate partial derivatives. In addition, the impact of sampling strategy and evaluation method on the uncertainty of the measurement results can also be taken into account with Monte Carlo method, which plays a guiding role in measurement planning.
基金Project(2007CB209402) supported by the National Basic Research Program of China Project(SKLGDUEK0906) supported by the Research Fund of State Key Laboratory for Geomechanics and Deep Underground Engineering of China
文摘An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main factors influencing the selection of mining method were taken into account,and the comprehensive evaluation index system of mining method selection was constructed.The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively.New measurement standards were constructed.Then,the unascertained measurement function of each evaluation index was established.The index weights of the factors were calculated by entropy theory,and credible degree recognition criteria were established according to the unascertained measurement theory.The results of mining method evaluation were obtained using the credible degree criteria,thus the best underground mining method was determined.Furthermore,this model was employed for the comprehensive evaluation and selection of the chosen standard mining methods in Xinli Gold Mine in Sanshandao of China.The results show that the relative superiority degrees of mining methods can be calculated using the unascertained measurement optimization model,so the optimal method can be easily determined.Meanwhile,the proposed method can take into account large amount of uncertain information in mining method selection,which can provide an effective way for selecting the optimal underground mining method.
基金Project(2016YFC0802203)supported by the National Key R&D Program of ChinaProject(2013G001-A-2)supported by the Science and Technology Research and Development Program of China Railway CorporationProject(SKLGDUEK2011)supported by the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining&Technology。
文摘Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles.
文摘One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term production scheduling(LTPS)of the open-pit mines.Deterministic and uncertainty-based approaches are identified as the main strategies,which have been widely used to cope with this problem.Within the last few years,many researchers have highly considered a new computational type,which is less costly,i.e.,meta-heuristic methods,so as to solve the mine design and production scheduling problem.Although the optimality of the final solution cannot be guaranteed,they are able to produce sufficiently good solutions with relatively less computational costs.In the present paper,two hybrid models between augmented Lagrangian relaxation(ALR)and a particle swarm optimization(PSO)and ALR and bat algorithm(BA)are suggested so that the LTPS problem is solved under the condition of grade uncertainty.It is suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the convergence.Moreover,the Lagrangian coefficients are updated by using PSO and BA.The presented models have been compared with the outcomes of the ALR-genetic algorithm,the ALR-traditional sub-gradient method,and the conventional method without using the Lagrangian approach.The results indicated that the ALR is considered a more efficient approach which can solve a large-scale problem and make a valid solution.Hence,it is more effectual than the conventional method.Furthermore,the time and cost of computation are diminished by the proposed hybrid strategies.The CPU time using the ALR-BA method is about 7.4%higher than the ALR-PSO approach.
基金Project(ER120001) supported by Development of Application Technology BioNano Super Composites, Korea
文摘Study of fuzzy entropy and similarity measure on intuitionistic fuzzy sets (IFSs) was proposed and analyzed. Unlike fuzzy set, IFSs contain uncertainty named hesitance, which is contained in fuzzy membership function itself. Hence, designing fuzzy entropy is not easy because of many entropy definitions. By considering different fuzzy entropy definitions, fuzzy entropy on IFSs is designed and discussed. Similarity measure was also presented and its usefulness was verified to evaluate degree of similarity.
基金authorities of East Tehran Branch,Islamic Azad University,Tehran,Iran,for providing support and necessary facilities
文摘Reasons and realities such as being non-linear of dynamical equations,being lightweight and unstable nature of quadrotor,along with internal and external disturbances and parametric uncertainties,have caused that the controller design for these quadrotors is considered the challenging issue of the day.In this work,an adaptive sliding mode controller based on neural network is proposed to control the altitude of a quadrotor.The error and error derivative of the altitude of a quadrotor are the inputs of neural network and altitude sliding surface variable is its output.Neural network estimates the sliding surface variable adaptively according to the conditions of quadrotor and sets the altitude of a quadrotor equal to the desired value.The proposed controller stability has been proven by Lyapunov theory and it is shown that all system states reach to sliding surface and are remaining in it.The superiority of the proposed control method has been proven by comparison and simulation results.
基金Project(513300303)supported by the General Armament Department,China
文摘Gaussian process(GP)has fewer parameters,simple model and output of probabilistic sense,when compared with the methods such as support vector machines.Selection of the hyper-parameters is critical to the performance of Gaussian process model.However,the common-used algorithm has the disadvantages of difficult determination of iteration steps,over-dependence of optimization effect on initial values,and easily falling into local optimum.To solve this problem,a method combining the Gaussian process with memetic algorithm was proposed.Based on this method,memetic algorithm was used to search the optimal hyper parameters of Gaussian process regression(GPR)model in the training process and form MA-GPR algorithms,and then the model was used to predict and test the results.When used in the marine long-range precision strike system(LPSS)battle effectiveness evaluation,the proposed MA-GPR model significantly improved the prediction accuracy,compared with the conjugate gradient method and the genetic algorithm optimization process.
基金Project(2017YFC0404803) supported by the National Key Research and Development Program of ChinaProject(51678040) supported by the National Natural Science Foundation of ChinaProject(8192034) supported by the Beijing Municipal Natural Science Foundation,China
文摘The cost and safety of geotechnical engineering are highly depending on the accuracy of soil shear strength parameters.There are three methods often used to estimate soil shear strength parameters,i.e.,moment method,3-sigma rule and linear regression method.In this study,the accuracy of these three methods is compared.Traditional linear regression method(LRM)can only offer the mean of shear strength parameters.Some engineers misuse the standard error of shear strength indexes as the standard deviations.Such misuse may highly underestimate the uncertainty and induce high risk to the geotechnical design.A modified LRM is proposed to determine both the mean and variance of shear strength parameters.The moment method,three-sigma rule and LRM are used to analyze the tri-axial test data in Xiaolangdi Hydraulic Project and three numerical shear strength tests.The results demonstrate that:1)The modified LRM can offer the most accurate estimation to shear strength parameters;2)A dimensionless formula is much preferred in LRM rather than a dimensional formula.The stress ratio formula is much better than stress relation in the shear strength parameter analysis.The proposed method is applicable to shear strength parameter analysis for tri-axial test data,direct shear test and the un-drained shear strength test of stratified clay.
基金Project(50678052) supported by the National Natural Science Foundation of China
文摘In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element model.In the new method,the finite element model was replaced by the multi-output support vector regression machine(MSVR).The interval variables of the measured frequency were sampled by Latin hypercube sampling method.The samples of frequency were regarded as the inputs of the trained MSVR.The outputs of MSVR were the target values of design parameters.The steel structure of National Aquatic Center for Beijing Olympic Games was introduced as a case for finite element model updating.The results show that the proposed method can avoid solving the problem of complicated calculation.Both the estimated values and associated uncertainties of the structure parameters can be obtained by the method.The static and dynamic characteristics of the updated finite element model are in good agreement with the measured data.
基金Projects(51708558,51878673,U1734208,52078485,U1934217,U1934209)supported by the National Natural Science Foundation of ChinaProject(2020JJ5740)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(KF2020-03)supported by the Key Open Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,ChinaProject(2020-Special-02)supported by the Science and Technology Research and Development Program of China Railway Group Limited。
文摘Random dynamic responses caused by the uncertainty of structural parameters of the coupled train-ballasted track-subgrade system under train loading can pose safety concerns to the train operation.This paper introduced a computational model for analyzing probabilistic dynamic responses of three-dimensional(3D)coupled train-ballasted track-subgrade system(TBTSS),where the coupling effects of uncertain rail irregularities,stiffness and damping properties of ballast and subgrade layers were simultaneously considered.The number theoretical method(NTM)was employed to design discrete points for the multi-dimensional stochastic parameters.The time-histories of stochastic dynamic vibrations of the TBSS with systematically uncertain structural parameters were calculated accurately and efficiently by employing the probability density evolution method(PDEM).The model-predicted results were consistent with those by the Monte Carlo simulation method.A sensitivity study was performed to assess the relative importance of those uncertain structural parameters,based on which a case study was presented to explore the stochastic probability evolution mechanism of such train-ballasted track-subgrade system.
基金Project(50975280)supported by the National Natural Science Foundation of ChinaProject(NCET-08-0149)supported by Program for New Century Excellent Talents in Universities of China
文摘The accurate measurement of kinematic parameters in satellite separation tests has great significance in evaluating separation performance. A novel study is made on the measuring accuracy of monocular and binocular, which are the two main vision measurement methods used for kinematic parameters. As satellite separation process is transient and high-dynamic, it will bring more extraction errors to the binocular. Based on the design approach of intersection measure and variance ratio, the monocular method reflects higher precision, simpler structure and easier calibration for level satellite separation. In ground separation tests, a high-speed monocular system is developed to gain and analyze twelve kinematic parameters of a small satellite. Research shows that this monocular method can be widely applied for its high precision, with position accuracy of 0.5 mm, speed accuracy of 5 mm/s, and angular velocity accuracy of 1 (°)/s.