A new methodology was proposed for contamination source identification using information provided by consumer complaints from a probabilistic view.Due to the high uncertainties of information derived from users,the ob...A new methodology was proposed for contamination source identification using information provided by consumer complaints from a probabilistic view.Due to the high uncertainties of information derived from users,the objective of the proposed methodology doesn't aim to capture a unique solution,but to minimize the number of possible contamination sources.In the proposed methodology,all the possible pollution nodes are identified through the CSA methodology firstly.And then based on the principle of total probability formula,the probability of each possible contamination node is obtained through a series of calculation.According to magnitude of the probability,the number of possible pollution nodes is minimized.The effectiveness and feasibility of the methodology is demonstrated through an application to a real case of ZJ City.Four scenarios were designed to investigate the influence of different uncertainties on the results in this case.The results show that pollutant concentration,injection duration,the number of consumer complaints nodes used for calculation and the prior probability with which consumers would complaint have no particular effect on the identification of contamination source.Three nodes were selected as the most possible pollution sources in water pipe network of ZJ City which includes more than 3 000 nodes.The results show the potential of the proposed method to identify contamination source through consumer complaints.展开更多
Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ...Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles.展开更多
Random dynamic responses caused by the uncertainty of structural parameters of the coupled train-ballasted track-subgrade system under train loading can pose safety concerns to the train operation.This paper introduce...Random dynamic responses caused by the uncertainty of structural parameters of the coupled train-ballasted track-subgrade system under train loading can pose safety concerns to the train operation.This paper introduced a computational model for analyzing probabilistic dynamic responses of three-dimensional(3D)coupled train-ballasted track-subgrade system(TBTSS),where the coupling effects of uncertain rail irregularities,stiffness and damping properties of ballast and subgrade layers were simultaneously considered.The number theoretical method(NTM)was employed to design discrete points for the multi-dimensional stochastic parameters.The time-histories of stochastic dynamic vibrations of the TBSS with systematically uncertain structural parameters were calculated accurately and efficiently by employing the probability density evolution method(PDEM).The model-predicted results were consistent with those by the Monte Carlo simulation method.A sensitivity study was performed to assess the relative importance of those uncertain structural parameters,based on which a case study was presented to explore the stochastic probability evolution mechanism of such train-ballasted track-subgrade system.展开更多
To promote the modeling standardization process of the integrated circuits, an improved electrical simulation model for a direct power injection (DPI) setup which was used to measure the conducted immunity of a 16-b...To promote the modeling standardization process of the integrated circuits, an improved electrical simulation model for a direct power injection (DPI) setup which was used to measure the conducted immunity of a 16-bit microcontroller to radio frequency aggression was investigated. Based on the existing model of the same microcontroller, the PDN module was modified by adding the core, PLL and MD network models, which could reflect the actual electric distribution situation within the microcontroller more accurately. By comparing the simulation results with the measurement results, the effectiveness of the modified model can be improved to 500 MHz, and its uncertainty is within +1.8 dB (+2 dB is acceptable). Then, to improve the simulation accuracy of the complete model in the high frequency range, the I/O model which contained the dynamic and nonlinear characteristics reflecting the variation of the internal impedance of the microcontroller with increasing the frequency of the external noise was introduced. By comparing the simulation results with the measurement results, the effectiveness of the second modified model can be improved up to 1.4 GHz with the uncertainty of ~1.8 dB. Thus, a conclusion can be reached that the proposed model can be applied to a much wider frequency range with a smaller uncertainty than the latest model of the similar type. Furthermore, associated with the electromagnetic emission testing platform model, the PDN module can also be used to predict the electromagnetic conducted and radiated emission characteristics. This modeling method can also be applied to other integrated circuits, which is very helpful to the standardization of the IC electromagnetic compatibility (EMC) modeling process.展开更多
基金Project(50908165) supported by the National Natural Science Foundation of China
文摘A new methodology was proposed for contamination source identification using information provided by consumer complaints from a probabilistic view.Due to the high uncertainties of information derived from users,the objective of the proposed methodology doesn't aim to capture a unique solution,but to minimize the number of possible contamination sources.In the proposed methodology,all the possible pollution nodes are identified through the CSA methodology firstly.And then based on the principle of total probability formula,the probability of each possible contamination node is obtained through a series of calculation.According to magnitude of the probability,the number of possible pollution nodes is minimized.The effectiveness and feasibility of the methodology is demonstrated through an application to a real case of ZJ City.Four scenarios were designed to investigate the influence of different uncertainties on the results in this case.The results show that pollutant concentration,injection duration,the number of consumer complaints nodes used for calculation and the prior probability with which consumers would complaint have no particular effect on the identification of contamination source.Three nodes were selected as the most possible pollution sources in water pipe network of ZJ City which includes more than 3 000 nodes.The results show the potential of the proposed method to identify contamination source through consumer complaints.
基金Project(2016YFC0802203)supported by the National Key R&D Program of ChinaProject(2013G001-A-2)supported by the Science and Technology Research and Development Program of China Railway CorporationProject(SKLGDUEK2011)supported by the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining&Technology。
文摘Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles.
基金Projects(51708558,51878673,U1734208,52078485,U1934217,U1934209)supported by the National Natural Science Foundation of ChinaProject(2020JJ5740)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(KF2020-03)supported by the Key Open Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,ChinaProject(2020-Special-02)supported by the Science and Technology Research and Development Program of China Railway Group Limited。
文摘Random dynamic responses caused by the uncertainty of structural parameters of the coupled train-ballasted track-subgrade system under train loading can pose safety concerns to the train operation.This paper introduced a computational model for analyzing probabilistic dynamic responses of three-dimensional(3D)coupled train-ballasted track-subgrade system(TBTSS),where the coupling effects of uncertain rail irregularities,stiffness and damping properties of ballast and subgrade layers were simultaneously considered.The number theoretical method(NTM)was employed to design discrete points for the multi-dimensional stochastic parameters.The time-histories of stochastic dynamic vibrations of the TBSS with systematically uncertain structural parameters were calculated accurately and efficiently by employing the probability density evolution method(PDEM).The model-predicted results were consistent with those by the Monte Carlo simulation method.A sensitivity study was performed to assess the relative importance of those uncertain structural parameters,based on which a case study was presented to explore the stochastic probability evolution mechanism of such train-ballasted track-subgrade system.
基金Project(2007dfa71250) supported by the International Science and Technology Cooperative Program of ChinaProject(20062250) supported by the Doctor Fund of North China Electric Power University, China
文摘To promote the modeling standardization process of the integrated circuits, an improved electrical simulation model for a direct power injection (DPI) setup which was used to measure the conducted immunity of a 16-bit microcontroller to radio frequency aggression was investigated. Based on the existing model of the same microcontroller, the PDN module was modified by adding the core, PLL and MD network models, which could reflect the actual electric distribution situation within the microcontroller more accurately. By comparing the simulation results with the measurement results, the effectiveness of the modified model can be improved to 500 MHz, and its uncertainty is within +1.8 dB (+2 dB is acceptable). Then, to improve the simulation accuracy of the complete model in the high frequency range, the I/O model which contained the dynamic and nonlinear characteristics reflecting the variation of the internal impedance of the microcontroller with increasing the frequency of the external noise was introduced. By comparing the simulation results with the measurement results, the effectiveness of the second modified model can be improved up to 1.4 GHz with the uncertainty of ~1.8 dB. Thus, a conclusion can be reached that the proposed model can be applied to a much wider frequency range with a smaller uncertainty than the latest model of the similar type. Furthermore, associated with the electromagnetic emission testing platform model, the PDN module can also be used to predict the electromagnetic conducted and radiated emission characteristics. This modeling method can also be applied to other integrated circuits, which is very helpful to the standardization of the IC electromagnetic compatibility (EMC) modeling process.