期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
比例阀控气缸系统确定性鲁棒反步运动跟踪控制器 被引量:3
1
作者 浦晨玮 刘磊 +1 位作者 何迪 钱鹏飞 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第4期133-141,共9页
为实现气缸运动轨迹的高精度鲁棒控制,建立了比例阀控缸系统的数学模型,并基于反步法设计了一种能够有效抑制系统模型参数不确定性、未建模动态和外界扰动等因素影响的非线性确定性鲁棒控制器。利用MATLAB中的Simulink模块构建气缸运动... 为实现气缸运动轨迹的高精度鲁棒控制,建立了比例阀控缸系统的数学模型,并基于反步法设计了一种能够有效抑制系统模型参数不确定性、未建模动态和外界扰动等因素影响的非线性确定性鲁棒控制器。利用MATLAB中的Simulink模块构建气缸运动轨迹跟踪控制系统仿真模型。采用MATLAB/Simulink中的xPC-Target开发了基于非线性确定性鲁棒控制器的气缸运动轨迹实时控制系统。仿真结果表明所设计控制器是可行的。试验结果表明该控制器能够有效地跟踪参考轨迹,跟踪0.3 Hz正弦轨迹时的最大跟踪误差为0.89 mm,约为幅值的2.97%;跟踪0.4 Hz正弦轨迹时的最大跟踪误差为1.02 mm,为幅值的3.4%。 展开更多
关键词 比例阀 气缸 运动轨迹跟踪 反步法 确定性鲁棒控制
在线阅读 下载PDF
不确定关联时滞大系统的分散鲁棒控制
2
作者 罗小元 张玉燕 关新平 《燕山大学学报》 CAS 2001年第z1期18-21,共4页
研究不确定关联时滞大系统的分散鲁棒控制问题,其中不确定性满足范数有界条件.应用线性矩阵不等式(LMI)的方法,得到了系统存在分散鲁棒控制器的充分条件.同时研究了当系统状态不可测时,基于观测器的使系统鲁棒镇定的充分条件.
关键词 时滞 LMI 分散鲁棒控制 确定性 分散观测器.
在线阅读 下载PDF
3-RPS并联机器人动力学分析及控制 被引量:10
3
作者 梁超 高宏力 +1 位作者 彭志文 文刚 《机械设计与制造》 北大核心 2018年第9期251-253,257,共4页
运用牛顿—欧拉方法建立3-RPS并联机器人机构的逆动力学模型。通过使用Simmechanics将并联机器人物理模型导入Matlab/Simulink中,利用Simulink对机构进行动力学仿真以及验证机构的逆动力学模型。针对并联机器人的建模不确定性,提出一种... 运用牛顿—欧拉方法建立3-RPS并联机器人机构的逆动力学模型。通过使用Simmechanics将并联机器人物理模型导入Matlab/Simulink中,利用Simulink对机构进行动力学仿真以及验证机构的逆动力学模型。针对并联机器人的建模不确定性,提出一种基于不确定性系统的鲁棒控制方案,即分别通过基于标称模型设计系统的计算力矩控制器,来镇定标称系统;通过构建Lyapunov函数来构建系统的鲁棒补偿控制器,来消除由于建模不确定性引起的跟踪误差。通过将控制模型导入Simulink中对其控制效果进行验证,其具有较低的稳态误差精度,效果优于计算力矩控制策略。 展开更多
关键词 3-RPS并联机器人 动力学分析 计算力矩控制 确定性鲁棒控制
在线阅读 下载PDF
Robust tracking control design for a flexible air-breathing hypersonic vehicle 被引量:2
4
作者 张垚 鲜斌 +2 位作者 刁琛 赵勃 郭建川 《Journal of Central South University》 SCIE EI CAS 2014年第1期130-139,共10页
A nonlinear robust controller was presented to improve the tracking control performance of a flexible air-breathing hypersonic vehicle(AHV) which is subjected to system parametric uncertainties and unknown additive ti... A nonlinear robust controller was presented to improve the tracking control performance of a flexible air-breathing hypersonic vehicle(AHV) which is subjected to system parametric uncertainties and unknown additive time-varying disturbances.The longitudinal dynamic model for the flexible AHV was used for the control development.High-gain observers were designed to compensate for the system uncertainties and additive disturbances.Small gain theorem and Lyapunov based stability analysis were utilized to prove the stability of the closed loop system.Locally uniformly ultimately bounded tracking of the vehicle's velocity,altitude and attack angle were achieved under aeroelastic effects,system parametric uncertainties and unknown additive disturbances.Matlab/Simulink simulation results were provided to validate the robustness of the proposed control design.The simulation results demonstrate that the tracking errors stay in a small region around zero. 展开更多
关键词 hypersonic vehicles nonlinear robust control flexible mode small gain theorem LYAPUNOV
在线阅读 下载PDF
Fuzzy robust sliding mode control of a class of uncertain systems 被引量:7
5
作者 REN Li-tong 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2296-2304,共9页
Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feed... Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feedback item was designed based on robust H∞ control theory. The robust state feedback control was utilized to substitute for the equivalent control of the traditional sliding mode control. Thus the robustness of systems sliding mode motion was improved even the initial states were unknown. Furthermore, when the upper bound of disturbance was unknown, the switching control logic was difficult to design, and the drawbacks of chattering in sliding mode control should also be considered simultaneously. To solve the above-mentioned problems, the fuzzy nonlinear method was applied to approximate the switching control term. Based on the Lyapunov stability theory, the parameter adaptive law which could guarantee the system stability was devised. The proposed control strategy could reduce the system chattering effectively. And the control input would not switch sharply, which improved the practicality of the sliding mode controller. Finally, simulation was conducted on system with parameter perturbations and unknown external disturbances. The result shows that the proposed method could enhance the approaching motion performance effectively. The chattering phenomenon is weakened, and the system possesses stronger robustness against parameter perturbations and external disturbances. 展开更多
关键词 uncertain systems robust control fuzzy sliding mode control CHATTERING
在线阅读 下载PDF
Robust adaptive control for a class of uncertain non-affine nonlinear systems using neural state feedback compensation 被引量:1
6
作者 赵石铁 高宪文 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第3期636-643,共8页
A robust adaptive control is proposed for a class of uncertain nonlinear non-affine SISO systems. In order to approximate the unknown nonlinear function, an affine type neural network(ATNN) and neural state feedback c... A robust adaptive control is proposed for a class of uncertain nonlinear non-affine SISO systems. In order to approximate the unknown nonlinear function, an affine type neural network(ATNN) and neural state feedback compensation are used, and then to compensate the approximation error and external disturbance, a robust control term is employed. By Lyapunov stability analysis for the closed-loop system, it is proven that tracking errors asymptotically converge to zero. Moreover, an observer is designed to estimate the system states because all the states may not be available for measurements. Furthermore, the adaptation laws of neural networks and the robust controller are given based on the Lyapunov stability theory. Finally, two simulation examples are presented to demonstrate the effectiveness of the proposed control method. Finally, two simulation examples show that the proposed method exhibits strong robustness, fast response and small tracking error, even for the non-affine nonlinear system with external disturbance, which confirms the effectiveness of the proposed approach. 展开更多
关键词 adaptive control neural networks uncertain non-affine systems state feedback Lyapunov stability
在线阅读 下载PDF
Robust tracking control for micro machine tools with load uncertainties 被引量:2
7
作者 FAN Shi-xun FAN Da-peng +1 位作者 HONG Hua-jie ZHANG Zhi-yong 《Journal of Central South University》 SCIE EI CAS 2012年第1期117-127,共11页
The quality of the micro-mechanical machining outcome depends significantly on the tracking performance of the miniaturized linear motor drive precision stage. The tracking behavior of a direct drive design is prone t... The quality of the micro-mechanical machining outcome depends significantly on the tracking performance of the miniaturized linear motor drive precision stage. The tracking behavior of a direct drive design is prone to uncertainties such as model parameter variations and disturbances. Robust optimal tracking controller design for this kind of precision stages with mass and damping ratio uncertainties was researched. The mass and damping ratio uncertainties were modeled as the structured parametric uncertainty model. An identification method for obtaining the parametric uncertainties was developed by using unbiased least square technique. The instantaneous frequency bandwidth of the external disturbance signals was analyzed by using short time Fourier transform technique. A two loop tracking control strategy that combines the p-synthesis and the disturbance observer (DOB) techniques was proposed. The p-synthesis technique was used to design robust optimal controllers based on structured uncertainty models. By complementing the/z controller, the DOB was applied to further improving the disturbance rejection performance. To evaluate the positioning performance of the proposed control strategy, the comparative experiments were conducted on a prototype micro milling machine among four control schemes: the proposed two-loop tracking control, the single loop μ control, the PID control and the PID with DOB control. The disturbance rejection performances, the root mean square (RMS) tracking errors and the performance robustness of different control schemes were studied. The results reveal that the proposed control scheme has the best positioning performance. It reduces the maximal errors caused by disturbance forces such as friction force by 60% and the RMS errors by 63.4% compared with the PID control. Compared to PID with DOB control, it reduces the RMS errors by 29.6%. 展开更多
关键词 micro machine tools servos parametric uncertainty model instantaneous frequency disturbance observer p-synthesis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部