期刊文献+
共找到165篇文章
< 1 2 9 >
每页显示 20 50 100
采用混合策略联合优化的模糊C-均值聚类信息熵点云简化算法 被引量:2
1
作者 黄鹤 黄佳慧 +2 位作者 刘国权 王会峰 高涛 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第7期214-226,共13页
针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时... 针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时融合了精英反向化思路,显著提升了鹈鹕优化算法(POA)的收敛趋势和全局寻优能力,提高了寻找FCM最优聚类中心的成功率;利用DEAMPOA结合加权熵法对FCM进行优化,提高鲁棒性的同时增强了搜索精度,得到较好的聚类结果;在8种UCI标准数据集上与4种算法对比进行聚类性能评估实验,验证了所提方法综合性能优越;将所提方法与信息熵融合,并应用在三维点云KITTI数据集简化中。实验结果表明:与包围框简化法、随机采样简化法和特征选择简化法对比,所提方法全局误差简化前后点集之间平均欧式距离(MED)指标分别降低了2.25%、6.93%、5.74%,点云简化效果最优且运行速度满足要求。 展开更多
关键词 c-均值 鹈鹕优化算法 点云简化 信息熵
在线阅读 下载PDF
软硬结合的快速模糊C-均值聚类算法的研究 被引量:7
2
作者 尹海丽 王颖洁 白凤波 《计算机工程与应用》 CSCD 北大核心 2008年第22期172-174,共3页
讨论的是对模糊C-均值聚类方法的改进,在原有的模糊C-均值算法的基础上,提出一种软硬结合的快速模糊C-均值聚类算法。快速模糊C-均值聚类算法是在模糊C-均值聚类算法之前加入一层硬C-均值聚类算法。硬聚类算法能比模糊聚类算法以高得多... 讨论的是对模糊C-均值聚类方法的改进,在原有的模糊C-均值算法的基础上,提出一种软硬结合的快速模糊C-均值聚类算法。快速模糊C-均值聚类算法是在模糊C-均值聚类算法之前加入一层硬C-均值聚类算法。硬聚类算法能比模糊聚类算法以高得多的速度完成,将硬聚类中心作为模糊聚类中心的迭代初值,从而提高模糊C-均值聚类算法的收敛速度,这对于大量数据的聚类是很有意义的。用数据仿真验证了这种快速模糊C-均值聚类算法比模糊C-均值算法迭代调整过程短,收敛速度快,聚类效果好。 展开更多
关键词 模糊 c-均值算法 模糊
在线阅读 下载PDF
基于粒子群优化算法的模糊C-均值聚类 被引量:27
3
作者 张利彪 周春光 +2 位作者 马铭 刘小华 孙彩堂 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2006年第2期217-222,共6页
利用粒子群优化(PSO)算法全局寻优、快速收敛的特点,结合模糊C-均值(FCM)算法提出一种新的模糊聚类算法.新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程,使算法具有很强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小... 利用粒子群优化(PSO)算法全局寻优、快速收敛的特点,结合模糊C-均值(FCM)算法提出一种新的模糊聚类算法.新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程,使算法具有很强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小的缺陷;同时也降低了FCM算法对初始值的敏感度.实验结果表明,与FCM相比本文算法聚类更为准确,效率更高. 展开更多
关键词 粒子群优化算法 模糊 模糊c-均值算法
在线阅读 下载PDF
基于粒子群优化的模糊C-均值聚类改进算法 被引量:18
4
作者 蒲蓬勃 王鸽 刘太安 《计算机工程与设计》 CSCD 北大核心 2008年第16期4277-4279,共3页
针对模糊C-均值聚类算法(FCM)存在易陷入局部优化的问题,将粒子群优化算法(PSO)和模糊C-均值聚类算法FCM相结合,提出了一种新的模糊聚类算法PSO-FCM。该算法使用PSO算法来代替FCM的迭代过程以实现模糊聚类,具有了很强的全局搜索能力,从... 针对模糊C-均值聚类算法(FCM)存在易陷入局部优化的问题,将粒子群优化算法(PSO)和模糊C-均值聚类算法FCM相结合,提出了一种新的模糊聚类算法PSO-FCM。该算法使用PSO算法来代替FCM的迭代过程以实现模糊聚类,具有了很强的全局搜索能力,从而不用再为得到好的聚类效果而反复选择初值。仿真实验结果表明,提出的模糊聚类算法提高了FCM的搜索能力,具有更好的稳定性和健壮性,优化能力增强,提高了聚类的效率和效果。 展开更多
关键词 全局优化 模糊c-均值算法 粒子群优化算法 粒子
在线阅读 下载PDF
基于自适应模糊C-均值的增量式聚类算法 被引量:11
5
作者 张忠平 陈丽萍 +1 位作者 王爱杰 林志杰 《计算机工程》 CAS CSCD 北大核心 2009年第6期60-62,65,共4页
针对模糊C-均值(FCM)算法不能很好地处理更新数据的缺点,提出基于FCM的自适应增量式聚类算法AIFCM。该算法结合密度和集合的思想,给出一种自动确定聚类初始中心的方法,能在聚类过程中动态改变聚类结果数,改善聚类的质量,减少人为的主观... 针对模糊C-均值(FCM)算法不能很好地处理更新数据的缺点,提出基于FCM的自适应增量式聚类算法AIFCM。该算法结合密度和集合的思想,给出一种自动确定聚类初始中心的方法,能在聚类过程中动态改变聚类结果数,改善聚类的质量,减少人为的主观因素,获得比较符合用户需求的聚类结果,并能在原有聚类结果的基础上简单有效地处理更新数据,过滤噪声数据,较好地避免大量重复计算。 展开更多
关键词 分析 模糊c-均值算法 增量式 AIFCM算法
在线阅读 下载PDF
一种改进的模糊C-均值(FCM)聚类算法 被引量:13
6
作者 安良 胡勇 +1 位作者 胡良梅 孟玲玲 《合肥工业大学学报(自然科学版)》 CAS CSCD 2003年第3期354-358,共5页
模糊C-均值(FCM)聚类算法受初始化影响较大,在迭代时容易陷入局部极小,鉴于遗传算法(GA)的并行全局搜索能力,文章将遗传算法引入进来对FCM聚类算法加以改进,并对所提出的新算法与经典算法的迭代步数和运行时间进行比较。实验结果表明:... 模糊C-均值(FCM)聚类算法受初始化影响较大,在迭代时容易陷入局部极小,鉴于遗传算法(GA)的并行全局搜索能力,文章将遗传算法引入进来对FCM聚类算法加以改进,并对所提出的新算法与经典算法的迭代步数和运行时间进行比较。实验结果表明:该算法与FCM聚类算法相比收敛速度更快,迭代步数更少。 展开更多
关键词 改进模糊c-均值算法 FCM算法 遗传算法 迭代步数 运行时间
在线阅读 下载PDF
模糊C-均值聚类算法的优化 被引量:17
7
作者 熊拥军 刘卫国 欧鹏杰 《计算机工程与应用》 CSCD 北大核心 2015年第11期124-128,共5页
针对传统模糊C-均值聚类算法(FCM算法)初始聚类中心选择的随机性和距离向量公式应用的局限性,提出一种基于密度和马氏距离优化的模糊C-均值聚类算法(Fuzzy C-Means Based on Mahalanobis and Density,FCMBMD算法)。该算法通过计算样本... 针对传统模糊C-均值聚类算法(FCM算法)初始聚类中心选择的随机性和距离向量公式应用的局限性,提出一种基于密度和马氏距离优化的模糊C-均值聚类算法(Fuzzy C-Means Based on Mahalanobis and Density,FCMBMD算法)。该算法通过计算样本点的密度来确定初始聚类中心,避免了初始聚类中心随机选取而产生的聚类结果的不稳定;采用马氏距离计算样本集的相似度,以满足不同度量单位数据的要求。实验结果表明,FCMBMD算法在聚类中心、收敛速度、迭代次数以及准确率等方面具有良好的效果。 展开更多
关键词 模糊c-均值 密度函数 马氏距离 基于密度和马氏距离优化的模糊c-均值(FCMBMD)算法
在线阅读 下载PDF
改进的模糊C-均值聚类算法 被引量:24
8
作者 关庆 邓赵红 王士同 《计算机工程与应用》 CSCD 北大核心 2011年第10期27-29,88,共4页
为了克服模糊C-均值(FCM)聚类算法易陷入局部极小值和对初始值敏感的缺点,提出了一种基于改进量子蚁群的模糊聚类算法。将量子计算原理和蚁群算法相结合来改进FCM算法。初期采用量子遗传算法生成信息素分布,后期利用蚁群算法的全局搜索... 为了克服模糊C-均值(FCM)聚类算法易陷入局部极小值和对初始值敏感的缺点,提出了一种基于改进量子蚁群的模糊聚类算法。将量子计算原理和蚁群算法相结合来改进FCM算法。初期采用量子遗传算法生成信息素分布,后期利用蚁群算法的全局搜索性、并行计算性等特点避免聚类陷入局部最优解。实验证明该算法保证了种群的多样性,有较好的全局收敛性,克服了模糊C-均值聚类算法的不足,能有效解决未成熟收敛的问题,使聚类问题最终快速、有效地收敛到全局最优解。 展开更多
关键词 分析 模糊c-均值 蚁群算法 量子计算
在线阅读 下载PDF
基于粒子群模糊C-均值聚类的图像分割算法 被引量:12
9
作者 李丽丽 李明 刘希玉 《计算机工程与应用》 CSCD 北大核心 2009年第31期158-160,共3页
模糊C-均值(FCM)聚类算法是一种结合无监督聚类和模糊集合概念的图像分割技术,比较有效,但存在着受初始聚类中心和隶属度矩阵影响,可能收敛到局部极小的缺点。将粒子群优化算法(PSO)与模糊C-均值聚类算法相结合,实现了基于粒子群模糊C-... 模糊C-均值(FCM)聚类算法是一种结合无监督聚类和模糊集合概念的图像分割技术,比较有效,但存在着受初始聚类中心和隶属度矩阵影响,可能收敛到局部极小的缺点。将粒子群优化算法(PSO)与模糊C-均值聚类算法相结合,实现了基于粒子群模糊C-均值聚类的图像分割算法。实验表明,该方法具有搜索全局最优解的能力,因而可得到很好的图像分割结果。 展开更多
关键词 图像分割 粒子群优化算法 模糊c-均值算法 全局优化
在线阅读 下载PDF
基于PSO的模糊C-均值聚类算法的图像分割 被引量:7
10
作者 陈曦 李春月 +1 位作者 李峰 曹鹏 《计算机工程与应用》 CSCD 北大核心 2008年第18期181-182,185,共3页
根据粒子群优化算法(PSO)强大的全局搜索能力,提出了用PSO算法优化模糊C均值聚类(FCM)的聚类中心的方法,有效地避免了传统的FCM对初始值及噪声数据敏感,容易陷入局部最优的缺点,同时图像分割的效果也得到了提高,性能也比传统的FCM方法... 根据粒子群优化算法(PSO)强大的全局搜索能力,提出了用PSO算法优化模糊C均值聚类(FCM)的聚类中心的方法,有效地避免了传统的FCM对初始值及噪声数据敏感,容易陷入局部最优的缺点,同时图像分割的效果也得到了提高,性能也比传统的FCM方法更加稳定。实验结果反映了该方法的有效性。 展开更多
关键词 粒子群优化算法 模糊c-均值 图像分割
在线阅读 下载PDF
新的混合模糊C-均值聚类算法 被引量:6
11
作者 王浩 王秀友 陈蕴 《计算机工程与设计》 CSCD 北大核心 2008年第4期917-919,922,共4页
基于量子行为的粒子群算法(QPSO)是一种改进的粒子群优化算法。它使用的参数个数少,在解的收敛性和全局搜索能力上优于基本的粒子群算法(PSO)。将QPSO算法与模糊C-均值(FCM)算法相结合提出一种新的混合模糊C-均值聚类算法(QPSO-FCM),新... 基于量子行为的粒子群算法(QPSO)是一种改进的粒子群优化算法。它使用的参数个数少,在解的收敛性和全局搜索能力上优于基本的粒子群算法(PSO)。将QPSO算法与模糊C-均值(FCM)算法相结合提出一种新的混合模糊C-均值聚类算法(QPSO-FCM),新算法代替了FCM算法的基于梯度下降的迭代过程,在一定程度上克服了FCM算法易陷入局部极小的缺陷,降低了FCM算法的初值敏感度。实验结果表明,改进后的新算法与FCM算法和PSO与FCM结合算法相比,具有良好的收敛性,聚类效果也有较好的改善。 展开更多
关键词 量子粒子群算法 粒子群算法 模糊c-均值算法 模糊 加权
在线阅读 下载PDF
模糊c-均值算法和万有引力算法求解模糊聚类问题 被引量:14
12
作者 谷文祥 郭丽萍 殷明浩 《智能系统学报》 2011年第6期520-525,共6页
针对单纯使用模糊c-均值算法(FCM)求解模糊聚类问题的不足,首先,提出一种改进的万有引力搜索算法,通过一定概率按照不同方式对速度进行更新,有效增大了种群的搜索域.其次,提出了模糊万有引力搜索算法(FG-SA).最后,在模糊万有引力搜索算... 针对单纯使用模糊c-均值算法(FCM)求解模糊聚类问题的不足,首先,提出一种改进的万有引力搜索算法,通过一定概率按照不同方式对速度进行更新,有效增大了种群的搜索域.其次,提出了模糊万有引力搜索算法(FG-SA).最后,在模糊万有引力搜索算法(FGSA)和模糊c-均值算法(FCM)的基础上,提出了一种新算法(FGSAFCM)来求解模糊聚类问题,有效避免了单纯使用模糊c-均值算法时对初始值敏感且易于陷入局部最优的缺点.采用目标函数和有效性评价函数作为评价标准,选取10个经典数据集作为测试数据,实验结果表明,新算法比单一的模糊c-均值算法有更高的准确性和鲁棒性. 展开更多
关键词 模糊 模糊c-均值算法 万有引力搜索算法 模糊万有引力搜索算法
在线阅读 下载PDF
模拟退火与模糊C-均值聚类相结合的图像分割算法 被引量:17
13
作者 刘晓龙 张佑生 谢颖 《工程图学学报》 CSCD 北大核心 2007年第1期89-93,共5页
模糊C-均值(FCM)聚类算法是一种结合无监督聚类和模糊集合概念的图像分割技术,比较有效,但存在着受初始聚类中心和隶属度矩阵影响,可能收敛到局部极小的缺点。将模拟退火算法(SA)与模糊C-均值聚类算法相结合,在合理选择冷却进度表的基础... 模糊C-均值(FCM)聚类算法是一种结合无监督聚类和模糊集合概念的图像分割技术,比较有效,但存在着受初始聚类中心和隶属度矩阵影响,可能收敛到局部极小的缺点。将模拟退火算法(SA)与模糊C-均值聚类算法相结合,在合理选择冷却进度表的基础上,依据模糊C-均值聚类算法建立模拟退火算法的目标函数,实现了基于模拟退火的模糊C-均值聚类图像分割算法。实验表明,该方法具有搜索全局最优解的能力,因而可得到很好的图像分割结果。 展开更多
关键词 计算机应用 图像分割 模糊c-均值算法 模拟退火算法
在线阅读 下载PDF
基于遗传算法的模糊c-均值聚类算法 被引量:8
14
作者 欧阳 成卫 韩逢庆 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第6期89-92,共4页
基于误差平方和准则的模糊c-均值算法(FCM)是一种典型的动态聚类算法,其求解结果通常是局部最优解;当模糊集合之间的并、交、包含运算采用传统定义时,在模糊c-均值聚类结果中还会存在无意义的聚类集。研究表明采用遗传算法进行模糊c-均... 基于误差平方和准则的模糊c-均值算法(FCM)是一种典型的动态聚类算法,其求解结果通常是局部最优解;当模糊集合之间的并、交、包含运算采用传统定义时,在模糊c-均值聚类结果中还会存在无意义的聚类集。研究表明采用遗传算法进行模糊c-均值聚类(Fuzzyc-meansalgorithmovergeneticalgorithm,GFCM)时,不仅能够消除无意义的聚类集,而且还在一定程度上避免模糊c-均值算法收敛到局部最优解,为此设计编码、选择、配对交叉、变异等步骤。测试数据实验表明采用GFCM算法的结果优于FCM算法。 展开更多
关键词 遗传算法 模糊c-均值 GFCM
在线阅读 下载PDF
遗传+模糊C-均值混合聚类算法 被引量:23
15
作者 陈金山 韦岗 《电子与信息学报》 EI CSCD 北大核心 2002年第2期210-215,共6页
本文提出了一种新的结合遗传算法(GA)和模糊C^-均值算法(FCM)的混合聚类算法(HCA)。它通过对问题的解空间交替进行全局和局部搜索,达到快速收敛至全局最优解,较好地解决了GA在达到全局最优解前收敛慢和FCM算法容易陷入局部极小的问题。... 本文提出了一种新的结合遗传算法(GA)和模糊C^-均值算法(FCM)的混合聚类算法(HCA)。它通过对问题的解空间交替进行全局和局部搜索,达到快速收敛至全局最优解,较好地解决了GA在达到全局最优解前收敛慢和FCM算法容易陷入局部极小的问题。三组不同分布类型的数据聚类实验表明,该算法具有较好的通用性和有效性。 展开更多
关键词 混合算法 遗传算法 模糊c-均值算法
在线阅读 下载PDF
人工免疫C-均值聚类算法 被引量:17
16
作者 张雷 李人厚 《西安交通大学学报》 EI CAS CSCD 北大核心 2005年第8期836-839,共4页
通过借鉴生物免疫系统中的克隆选择原理和记忆机制,提出了一种人工免疫C-均值混合聚类算法.该算法采用了新的克隆选择方法,通过亲和度排序和个体浓度定义了个体的选择概率,从而可确定个体的适应值评价函数,以评价和选择个体.算法还集成... 通过借鉴生物免疫系统中的克隆选择原理和记忆机制,提出了一种人工免疫C-均值混合聚类算法.该算法采用了新的克隆选择方法,通过亲和度排序和个体浓度定义了个体的选择概率,从而可确定个体的适应值评价函数,以评价和选择个体.算法还集成了一种C-均值搜索算子,用于加快收敛速度.在聚类数目已知的情况下,所提算法能够得到给定数据集下的全局最优划分,与基于遗传算法的聚类方法比较,它具有更快的收敛速度和更高的收敛精度,并可扩展到性能指标能够表示为优化聚类中心函数的聚类模型之中.仿真结果表明,所提算法是有效性的. 展开更多
关键词 算法 人工免疫 c-均值
在线阅读 下载PDF
基于模糊C-均值聚类算法的柴油机磨损状态评判 被引量:5
17
作者 赵雪红 张来斌 樊建春 《润滑与密封》 CAS CSCD 北大核心 2005年第2期23-25,共3页
论述了模糊C 均值聚类算法的原理与步骤, 选取光谱分析中磨损元素的含量和 3个定量铁谱参数作为特征参数, 将模糊C 均值聚类算法应用到柴油机磨损状态评判体系中, 可以得到聚类中心和用于分类的标准向量。对聚类结果进行了验证, 表明应... 论述了模糊C 均值聚类算法的原理与步骤, 选取光谱分析中磨损元素的含量和 3个定量铁谱参数作为特征参数, 将模糊C 均值聚类算法应用到柴油机磨损状态评判体系中, 可以得到聚类中心和用于分类的标准向量。对聚类结果进行了验证, 表明应用模糊聚类的方法评判柴油机的磨损状态是可信的和准确的。 展开更多
关键词 模糊c-均值算法 标准向量 谱参数 光谱分析 元素 选取 模糊 铁谱 中心 验证
在线阅读 下载PDF
基于自适应权重的模糊C-均值聚类算法 被引量:8
18
作者 任丽娜 秦永彬 许道云 《计算机应用研究》 CSCD 北大核心 2012年第8期2849-2851,共3页
针对模糊C-均值聚类算法过度依赖初始聚类中心的选取,从而易受孤立点和样本分布不均衡的影响而陷入局部最优状态的不足,提出一种基于自适应权重的模糊C-均值聚类算法。该算法采用高斯距离比例表示权重,在每一次迭代过程中,根据当前数据... 针对模糊C-均值聚类算法过度依赖初始聚类中心的选取,从而易受孤立点和样本分布不均衡的影响而陷入局部最优状态的不足,提出一种基于自适应权重的模糊C-均值聚类算法。该算法采用高斯距离比例表示权重,在每一次迭代过程中,根据当前数据的聚类划分情况,动态计算每个样本对于类的权重,降低了算法对初始聚类中心的依赖,减弱了孤立点和样本分布不均衡的影响。实验结果表明,该算法是一种较优的聚类算法,具有更好的健壮性和聚类效果。 展开更多
关键词 模糊c-均值算法 自适应权重 高斯距离 隶属矩阵
在线阅读 下载PDF
基于半监督的模糊C-均值聚类算法 被引量:6
19
作者 郭新辰 郗仙田 +1 位作者 樊秀玲 韩啸 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第4期705-709,共5页
通过将半监督学习的思想引入到模糊C-均值聚类方法中,提出一种基于半监督的模糊C-均值聚类算法,有效解决了模糊C-均值聚类算法随机选取初始聚类中心导致聚类结果局部收敛的问题,能客观获取最佳聚类数目和初始聚类中心.实验结果表明,与... 通过将半监督学习的思想引入到模糊C-均值聚类方法中,提出一种基于半监督的模糊C-均值聚类算法,有效解决了模糊C-均值聚类算法随机选取初始聚类中心导致聚类结果局部收敛的问题,能客观获取最佳聚类数目和初始聚类中心.实验结果表明,与传统模糊C-均值聚类算法相比,基于半监督的模糊C-均值算法在一定程度上减少了迭代次数,降低了对初始聚类中心的依赖性. 展开更多
关键词 半监督学习 模糊c-均值算法 信息熵
在线阅读 下载PDF
基于主成分和模糊C-均值聚类算法的农业水资源高效利用综合分区 被引量:14
20
作者 刘玉邦 梁川 《水文》 CSCD 北大核心 2011年第5期57-63,共7页
基于农业生态系统环境要素、水的资源属性、水资源的高效利用内涵、生产力水平、土地利用方式、种植结构及种植模式等因子,选取构建农业水资源高效利用综合分区的指标体系(16个定量指标、4个定性指标),采用主成分分析和模糊C-均值聚类... 基于农业生态系统环境要素、水的资源属性、水资源的高效利用内涵、生产力水平、土地利用方式、种植结构及种植模式等因子,选取构建农业水资源高效利用综合分区的指标体系(16个定量指标、4个定性指标),采用主成分分析和模糊C-均值聚类算法为区划方法,对川中丘陵区进行量化分区。研究结果将川中丘陵区16个地级市和一个县级市(简阳)分为农业水资源较低利用区、农业水资源低效利用区、农业水资源中等利用区、农业水资源高效利用区和农业水资源较高效利用区5个区,这对南方季节性干旱区水资源利用规划有较强的借鉴作用。 展开更多
关键词 农业水资源 高效利用 综合分区 主成分 模糊c-均值算法
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部