基于大体积混凝土内部的温度变化,利用27 Al魔角旋转核磁共振(27 Al MAS NMR)结合去卷积技术,研究变温下SO2-4对水泥硬化浆体中Al 3+配位分布的影响。结果表明,变温的高温阶段促进AFt、TAH(third aluminum hydrate)和掺杂在C-S-H结构中(...基于大体积混凝土内部的温度变化,利用27 Al魔角旋转核磁共振(27 Al MAS NMR)结合去卷积技术,研究变温下SO2-4对水泥硬化浆体中Al 3+配位分布的影响。结果表明,变温的高温阶段促进AFt、TAH(third aluminum hydrate)和掺杂在C-S-H结构中(C-S-A-H)的四配位铝(Al[4])向AFm转化;降温阶段促进TAH生成,利于AFm和C-S-A-H中Al[4]向AFt转化;而变温后20℃常温不仅利于AFt向AFm转化,TAH向Al[4]转变,而且利于Al[4]进入高钙硅比(Ca/Si)C-S-H结构。在5%Na2SO4溶液中,SO2-4在侵蚀3d时首先对AFm侵蚀,对TAH和C-S-A-H中Al[4]侵蚀作用较小;变温过程的高温加快SO2-4对AFm和TAH的侵蚀,并且对C-S-A-H凝胶有脱铝作用;变温后20℃常温有利于C-S-H凝胶与硫酸根竞争Al[4],低Ca/Si的C-S-A-H凝胶具有较强的抗SO2-4脱铝能力。展开更多
To understand the effect of steam curing temperature on the hydrate and microstructure of hardened cement paste,several measuring methods including X-ray diffraction(XRD),atomic absorption spectroscopy(ASS),ion chroma...To understand the effect of steam curing temperature on the hydrate and microstructure of hardened cement paste,several measuring methods including X-ray diffraction(XRD),atomic absorption spectroscopy(ASS),ion chromatography,conductivity meter,alternating-current impedance spectroscopy and nuclear magnetic resonance(NMR)are employed to investigate the hydration characteristics,pore solution composition and conductivity,resistivity and pore structure during the steam curing process.Experimental results show that steam curing promotes the hydration process,greatly raises the resistivity,and decreases the porosity of specimen at early age.Compared with being treated at 45℃,higher temperature leads to a fast decomposition of ettringite at initial stage of the constant temperature treatment period,which improves the relative content and ionic activity of the conductive ions in pore solution.Furthermore,the number of pores larger than 200 nm increases significantly,which reduces the resistivity of the hardened cement paste.Cement paste treated at 45℃ has a more stable and denser microstructure with less damages.展开更多
文摘基于大体积混凝土内部的温度变化,利用27 Al魔角旋转核磁共振(27 Al MAS NMR)结合去卷积技术,研究变温下SO2-4对水泥硬化浆体中Al 3+配位分布的影响。结果表明,变温的高温阶段促进AFt、TAH(third aluminum hydrate)和掺杂在C-S-H结构中(C-S-A-H)的四配位铝(Al[4])向AFm转化;降温阶段促进TAH生成,利于AFm和C-S-A-H中Al[4]向AFt转化;而变温后20℃常温不仅利于AFt向AFm转化,TAH向Al[4]转变,而且利于Al[4]进入高钙硅比(Ca/Si)C-S-H结构。在5%Na2SO4溶液中,SO2-4在侵蚀3d时首先对AFm侵蚀,对TAH和C-S-A-H中Al[4]侵蚀作用较小;变温过程的高温加快SO2-4对AFm和TAH的侵蚀,并且对C-S-A-H凝胶有脱铝作用;变温后20℃常温有利于C-S-H凝胶与硫酸根竞争Al[4],低Ca/Si的C-S-A-H凝胶具有较强的抗SO2-4脱铝能力。
基金Projects(U1534207,11790283,51878583)supported by the National Natural Science Foundation of China。
文摘To understand the effect of steam curing temperature on the hydrate and microstructure of hardened cement paste,several measuring methods including X-ray diffraction(XRD),atomic absorption spectroscopy(ASS),ion chromatography,conductivity meter,alternating-current impedance spectroscopy and nuclear magnetic resonance(NMR)are employed to investigate the hydration characteristics,pore solution composition and conductivity,resistivity and pore structure during the steam curing process.Experimental results show that steam curing promotes the hydration process,greatly raises the resistivity,and decreases the porosity of specimen at early age.Compared with being treated at 45℃,higher temperature leads to a fast decomposition of ettringite at initial stage of the constant temperature treatment period,which improves the relative content and ionic activity of the conductive ions in pore solution.Furthermore,the number of pores larger than 200 nm increases significantly,which reduces the resistivity of the hardened cement paste.Cement paste treated at 45℃ has a more stable and denser microstructure with less damages.