期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于深度优先搜索与增量式求解的极小一阶不可满足子式提取算法 被引量:1
1
作者 张建民 黎铁军 +2 位作者 张峻 徐炜遐 李思昆 《国防科技大学学报》 EI CAS CSCD 北大核心 2012年第5期121-126,共6页
随着寄存器传输级甚至行为级的硬件描述语言应用越来越广泛,基于一阶逻辑的可满足性模理论(Satisfiability Modulo Theories,SMT)逐渐替代布尔可满足性(Boolean Satisfiability,SAT),在VLSI形式化验证领域具有更加重要的应用价值。而极... 随着寄存器传输级甚至行为级的硬件描述语言应用越来越广泛,基于一阶逻辑的可满足性模理论(Satisfiability Modulo Theories,SMT)逐渐替代布尔可满足性(Boolean Satisfiability,SAT),在VLSI形式化验证领域具有更加重要的应用价值。而极小不可满足子式能够帮助EDA工具迅速定位硬件中的逻辑错误。针对极小SMT不可满足子式的求解问题,采用深度优先搜索与增量式求解策略,提出了深度优先搜索的极小SMT不可满足子式求解算法。与目前最优的宽度优先搜索算法对比实验表明:该算法能够有效地求解极小不可满足子式,随着公式的规模逐渐增大时,深度优先搜索算法优于宽度优先搜索算法。 展开更多
关键词 形式化验证 硬件错误定位 可满足性模理论 极小不可满足子式
在线阅读 下载PDF
Approximate Iteration Detection and Precoding in Massive MIMO 被引量:5
2
作者 Chuan Tang Yerong Tao +3 位作者 Yancang Chen Cang Liu Luechao Yuan Zuocheng Xing 《China Communications》 SCIE CSCD 2018年第5期183-196,共14页
Massive multiple-input multiple-output provides improved energy efficiency and spectral efficiency in 5 G. However it requires large-scale matrix computation with tremendous complexity, especially for data detection a... Massive multiple-input multiple-output provides improved energy efficiency and spectral efficiency in 5 G. However it requires large-scale matrix computation with tremendous complexity, especially for data detection and precoding. Recently, many detection and precoding methods were proposed using approximate iteration methods, which meet the demand of precision with low complexity. In this paper, we compare these approximate iteration methods in precision and complexity, and then improve these methods with iteration refinement at the cost of little complexity and no extra hardware resource. By derivation, our proposal is a combination of three approximate iteration methods in essence and provides remarkable precision improvement on desired vectors. The results show that our proposal provides 27%-83% normalized mean-squared error improvement of the detection symbol vector and precoding symbol vector. Moreover, we find the bit-error rate is mainly controlled by soft-input soft-output Viterbi decoding when using approximate iteration methods. Further, only considering the effect on soft-input soft-output Viterbi decoding, the simulation results show that using a rough estimation for the filter matrix of minimum mean square error detection to calculating log-likelihood ratio could provideenough good bit-error rate performance, especially when the ratio of base station antennas number and the users number is not too large. 展开更多
关键词 massive MIMO detection and precoding matrix inversion iteration refinement soft Viterbi decoding
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部