The leaching kinetics of molybdenum from Ni-Mo ore in sulfuric acid solution with sodium peroxodisulfate was studied.The effects including leaching temperature, reaction time, particle size, stirring speed, and concen...The leaching kinetics of molybdenum from Ni-Mo ore in sulfuric acid solution with sodium peroxodisulfate was studied.The effects including leaching temperature, reaction time, particle size, stirring speed, and concentrations of sulfuric acid and sodium peroxodisulfate were investigated. The leaching process of molybdenum from Ni-Mo ore is controlled by the chemical reaction through the solid layer across the unreacted shrinking core. The apparent activation energy of the leaching of molybdenum is calculated to be 41.0 k J/mol and the leaching kinetics equation of molybdenum from Ni-Mo ore is expressed as1-(1-a)1/3=3405.7exp[-41030.0/(RT)]t.展开更多
In order to decrease the solubility of PbSO4 and enhance lead recovery from PbSO4 bearing wastes, CO was employed as a reductant to transform PbSO4 into Pb S. Reaction system was established and reductive thermodynami...In order to decrease the solubility of PbSO4 and enhance lead recovery from PbSO4 bearing wastes, CO was employed as a reductant to transform PbSO4 into Pb S. Reaction system was established and reductive thermodynamics of PbSO4 was calculated by software HSC 5.0. The effects of gas concentration, reaction temperature, time and mass of sample on reduction of PbSO4 were examined by thermogravimetry(TG) and XRD. Roasting tests further verify the conclusions of thermodynamic and TG analyses. The results show that increasing temperature in the reasonable range and CO content are favorable for the formation of Pb S. The reduction process is controlled by chemical reaction and calculation value of the activation energy is 47.88 k J/mol.展开更多
The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 2...The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 200 r/min,the effect of gas film diffusion on manganese extraction efficiency could be neglected,and the kinetic behavior was investigated under the condition of elimination of external diffusion influence on the leaching process.Effects of leaching temperature,mass ratio of cellulose and ore,and the sulfuric acid concentration on manganese extraction efficiency were discussed.The kinetic data were analyzed based on the shrinking core model,which indicated that the leaching process was dominated by both ash layer diffusion and chemical reaction at the initial stage,with the progress of leaching reaction,the rate-controlling step switched to the ash layer diffusion.It was also concluded that the sulfuric acid concentration had the most significant influence on the leaching rate,the reaction orders with respect to the sulfuric acid concentration were 2.102 in the first 60 min,and 3.642 in the later 90 min,while the reaction orders for mass ratio of cellulose and ore were 0.660 and 0.724,respectively.An Arrhenius relationship was used to relate the temperature to the rate of leaching,from which apparent activation energies were calculated to be 46.487 kJ/mol and 62.290 kJ/mol at the two stages,respectively.Finally,the overall leaching rate equations for the manganese dissolution reaction with cellulose in sulphuric acid solution were developed.The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of SEM and XRD analyses.展开更多
Using Schiff base as a phase transfer catalyst, ethoxycarbonyl isothiocyanate was synthesized by reacting ethyl chloroformate with sodium thiocyanate. In order to get the best synthetic technology, an orthogonal test ...Using Schiff base as a phase transfer catalyst, ethoxycarbonyl isothiocyanate was synthesized by reacting ethyl chloroformate with sodium thiocyanate. In order to get the best synthetic technology, an orthogonal test (L9(34)) was applied. The results show that reaction temperature, reaction time, content of catalyst and molar ratio of sodium thiocyanate to ethyl chloroformate are the main factors influencing the yield. The four factors chosen for the present investigation are based on the results of a single-factor test. The optimum synthetic technology is determined as follows: reaction temperature 35 ℃, reaction time 3 h, the content of catalyst (molar fraction based on ethyl chloroformate) 1.5% and molar ratio of sodium thiocyanate to ethyl chloroformate 1.1. Under the optimized synthetic technology, the experimental yield reaches 96.8%.展开更多
基金Project(51364009) supported by the National Natural Science Foundation of ChinaProject(JSU071302) supported by the Construct Program of the Key Discipline in Hunan Province,ChinaProject(2015JJ2115) supported by the Natural Science Foundation of Hunan Province,China
文摘The leaching kinetics of molybdenum from Ni-Mo ore in sulfuric acid solution with sodium peroxodisulfate was studied.The effects including leaching temperature, reaction time, particle size, stirring speed, and concentrations of sulfuric acid and sodium peroxodisulfate were investigated. The leaching process of molybdenum from Ni-Mo ore is controlled by the chemical reaction through the solid layer across the unreacted shrinking core. The apparent activation energy of the leaching of molybdenum is calculated to be 41.0 k J/mol and the leaching kinetics equation of molybdenum from Ni-Mo ore is expressed as1-(1-a)1/3=3405.7exp[-41030.0/(RT)]t.
基金Project(51204210)supported by the National Natural Science Foundation of ChinaProject(2011AA061001)supported by the National High Technology Research and Development Program of ChinaProject(2012BAC12B04)supported by the National Science and Technology Pillar Program during the Twelfth Five-Year Plan of China
文摘In order to decrease the solubility of PbSO4 and enhance lead recovery from PbSO4 bearing wastes, CO was employed as a reductant to transform PbSO4 into Pb S. Reaction system was established and reductive thermodynamics of PbSO4 was calculated by software HSC 5.0. The effects of gas concentration, reaction temperature, time and mass of sample on reduction of PbSO4 were examined by thermogravimetry(TG) and XRD. Roasting tests further verify the conclusions of thermodynamic and TG analyses. The results show that increasing temperature in the reasonable range and CO content are favorable for the formation of Pb S. The reduction process is controlled by chemical reaction and calculation value of the activation energy is 47.88 k J/mol.
基金Project(2010FJ1011)supported by the Major Project of Science and Technology of Hunan Province,China
文摘The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 200 r/min,the effect of gas film diffusion on manganese extraction efficiency could be neglected,and the kinetic behavior was investigated under the condition of elimination of external diffusion influence on the leaching process.Effects of leaching temperature,mass ratio of cellulose and ore,and the sulfuric acid concentration on manganese extraction efficiency were discussed.The kinetic data were analyzed based on the shrinking core model,which indicated that the leaching process was dominated by both ash layer diffusion and chemical reaction at the initial stage,with the progress of leaching reaction,the rate-controlling step switched to the ash layer diffusion.It was also concluded that the sulfuric acid concentration had the most significant influence on the leaching rate,the reaction orders with respect to the sulfuric acid concentration were 2.102 in the first 60 min,and 3.642 in the later 90 min,while the reaction orders for mass ratio of cellulose and ore were 0.660 and 0.724,respectively.An Arrhenius relationship was used to relate the temperature to the rate of leaching,from which apparent activation energies were calculated to be 46.487 kJ/mol and 62.290 kJ/mol at the two stages,respectively.Finally,the overall leaching rate equations for the manganese dissolution reaction with cellulose in sulphuric acid solution were developed.The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of SEM and XRD analyses.
基金Project(2007AA06Z122) supported by the National High Technology Research and Development Program of ChinaProject(20110491267) supported by the Postdoctoral Science Foundation of ChinaProject(74341015502) supported by Postdoctoral Fund of Central South University,China
文摘Using Schiff base as a phase transfer catalyst, ethoxycarbonyl isothiocyanate was synthesized by reacting ethyl chloroformate with sodium thiocyanate. In order to get the best synthetic technology, an orthogonal test (L9(34)) was applied. The results show that reaction temperature, reaction time, content of catalyst and molar ratio of sodium thiocyanate to ethyl chloroformate are the main factors influencing the yield. The four factors chosen for the present investigation are based on the results of a single-factor test. The optimum synthetic technology is determined as follows: reaction temperature 35 ℃, reaction time 3 h, the content of catalyst (molar fraction based on ethyl chloroformate) 1.5% and molar ratio of sodium thiocyanate to ethyl chloroformate 1.1. Under the optimized synthetic technology, the experimental yield reaches 96.8%.