期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The use of a ternary metal sulfide loading on carbon fibers as the sulfur host for high performance low-temperature lithium sulfur batteries
1
作者 HE Xin ZUO Huai-yang +4 位作者 XIAO Ru QU Zhuo-yan SUN Zhen-hua WANG Bao Li Feng 《新型炭材料(中英文)》 北大核心 2025年第1期167-177,共11页
The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nit... The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nitrogen-doped carbon fibers loaded with a ternary metal sulf-ide((Fe,Co,Ni)_(9)S_(8))for use as the sulfur host in Li-S batteries.This materi-al was prepared using transfer blot filter paper as the carbon precursor,thiourea as the source of nitrogen and sulfur,and FeCl_(3)·6H_(2)O,CoCl_(2)·6H_(2)O and NiCl_(2)·6H_(2)O as the metal ion sources.It was synthesized by an impreg-nation method followed by calcination.The nitrogen doping significantly in-creased the conductivity of the host,and the metal sulfides have excellent catalytic activities.Theoretical calculations,and adsorption and deposition experiments show that active sites on the surface of FCNS@NCFs selectively adsorb polysulfides,facilitate rapid adsorption and conversion,prevent cathode passivation and inhib-it the polysulfide shuttling.The FCNS@NCFs used as the sulfur host has excellent electrochemical properties.Its initial dis-charge capacity is 1639.0 mAh g^(−1) at 0.2 C and room temperature,and it remains a capacity of 1255.1 mAh g^(−1) after 100 cycles.At−20~C,it has an initial discharge capacity of 1578.5 mAh g^(−1) at 0.2 C,with a capacity of 867.5 mAh g^(−1) after 100 cycles.Its excellent performance at both ambient and low temperatures suggests a new way to produce high-performance low-temper-ature Li-S batteries. 展开更多
关键词 Lithium sulfur batteries Low temperature Transition metal sulfides Sulfur conversion kinetics
在线阅读 下载PDF
Utilizing the ozonation pathway for enhanced conversion of manganese dithionate to manganese dioxide from acid leaching solution:Insights into mechanism and kinetics
2
作者 QU Bing LI Teng +4 位作者 YANG Zheng-zheng REN Li-ping WANG Ying-wu WU Meng-qiang CHEN Si-bei 《Journal of Central South University》 2025年第4期1340-1352,共13页
In response to the fact that the presence of manganese dithionate(MnS_(2)O_(6))leads to a series of adverse impacts,especially lower purity of manganese sulfate(MnSO_(4))and disruption of its recovery,advanced oxidati... In response to the fact that the presence of manganese dithionate(MnS_(2)O_(6))leads to a series of adverse impacts,especially lower purity of manganese sulfate(MnSO_(4))and disruption of its recovery,advanced oxidation methods such as ozonation system are used to manage MnS_(2)O_(6)in the leaching solution,replacing conventional methods.To ascertain the conversion rate and kinetics of MnS_(2)O_(6)during the ozonation process,we explored the factors influencing its removal rate,including ozone dosage,manganese dithionate concentration,sulfuric acid concentration,and reaction temperature.Batch experiments were conducted to determine the reaction rate constant of ozone(k)and activation energy(Ea)obtained from intermittent experimental data fitting,revealing a least-squares exponential conversion relationship between k and the MnS_(2)O_(6)removal amount,wherein an increase in the aforementioned factors led to an enhanced MnS_(2)O_(6)conversion rate,exceeding 99.3%.The formation mechanism of the ozone products proposed during the experiment was summarized and proposed as follows:1)Mn^(2+)was directly oxidized to MnO_(2),and 2)SO_(4)2−was obtained by the catalytic oxidation of S_(2)O_(6)^(2−)with HO•from O3 decomposition.According to the kinetics analysis,the pre-exponential factor and total activation energy of the ozonation kinetics equation were 1.0×10^(23) s^(−1) and 177.28 kJ/mol,respectively.Overall,the present study demonstrates that O_(3) as an oxidizing agent can effectively facilitate MnS_(2)O_(6)disproportionation while preventing the release of the secondary pollutant,SO_(2)gas. 展开更多
关键词 OZONATION manganese dithionate manganese dioxide CONVERSION mechanism and kinetics
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部