The grown conditions of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were investigated,and then experiments were conducted to research the bioleaching behaviors of crude ore of copper sulfide and h...The grown conditions of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were investigated,and then experiments were conducted to research the bioleaching behaviors of crude ore of copper sulfide and hand-picked concentrates of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans.The experimental results show that the bacteria grow best when the temperature is(30±1) °C and the pH value is 2.0.The bacteria concentration is 2.24×107 mL-1 in this condition.It is found that the copper extraction yield is affected by the inoculum size and the pulp density and the extraction yield increases as the inoculum size grows.The bioleaching rates reach their highest point in sulfide copper and chalcopyrite with a pulp density of 5% and 10%,respectively.Column flotation experiments of low-grade copper sulfide ores show that the bioleaching recovery reaches nearly 45% after 75 days.展开更多
The bioleaching of chalcopyrite was investigated using a pure and mixed culture consisting of iron-oxidizing Leptospirillum ferriphilum (L. ferriphilum) and sulfur-oxidizing Acidthiobacillus thiooxidans (.4. thioox...The bioleaching of chalcopyrite was investigated using a pure and mixed culture consisting of iron-oxidizing Leptospirillum ferriphilum (L. ferriphilum) and sulfur-oxidizing Acidthiobacillus thiooxidans (.4. thiooxidans). The electrochemical tests were conducted to investigate the bioleaching behavior of chalcopyrite by various bacteria. Bioleaching efficiency of chalcopyrite in mixed culture is higher than that in the pure culture of L.ferriphilum alone. The iron-oxidizing L.ferriphilum plays a dominant role during bioleaching of chalcopyrite in the mixed culture of L. ferriphilum and A. thiooxidans. During bioleaching, certain values of redox potential are beneficial to the decomposition of chalcopyrite. Jarosite and sulfur are observed as products of bioleaching. The addition of A. thiooxidans during leaching by L. ferriphilum can change the electrochemical control steps of leaching. The corrosion current density is substantially promoted in the culture involving bacteria, especially in the mixed culture.展开更多
基金Project(2012AA061501)supported by the National High-tech Research and Development Program of ChinaProject(20120162120010)supported by the Research Fund for the Doctoral Program of Higher Education of China+2 种基金Project(NCET-13-0595)supported by the program for New Century Excellent Talents in University of ChinaProject(51374248)supported by the National Natural Science Foundation of ChinaProject(2010CB630905)supported by the National Key Basic Research Program of China
文摘The grown conditions of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were investigated,and then experiments were conducted to research the bioleaching behaviors of crude ore of copper sulfide and hand-picked concentrates of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans.The experimental results show that the bacteria grow best when the temperature is(30±1) °C and the pH value is 2.0.The bacteria concentration is 2.24×107 mL-1 in this condition.It is found that the copper extraction yield is affected by the inoculum size and the pulp density and the extraction yield increases as the inoculum size grows.The bioleaching rates reach their highest point in sulfide copper and chalcopyrite with a pulp density of 5% and 10%,respectively.Column flotation experiments of low-grade copper sulfide ores show that the bioleaching recovery reaches nearly 45% after 75 days.
基金Project(2010CB630903) supported by the National Basic Research Program of China
文摘The bioleaching of chalcopyrite was investigated using a pure and mixed culture consisting of iron-oxidizing Leptospirillum ferriphilum (L. ferriphilum) and sulfur-oxidizing Acidthiobacillus thiooxidans (.4. thiooxidans). The electrochemical tests were conducted to investigate the bioleaching behavior of chalcopyrite by various bacteria. Bioleaching efficiency of chalcopyrite in mixed culture is higher than that in the pure culture of L.ferriphilum alone. The iron-oxidizing L.ferriphilum plays a dominant role during bioleaching of chalcopyrite in the mixed culture of L. ferriphilum and A. thiooxidans. During bioleaching, certain values of redox potential are beneficial to the decomposition of chalcopyrite. Jarosite and sulfur are observed as products of bioleaching. The addition of A. thiooxidans during leaching by L. ferriphilum can change the electrochemical control steps of leaching. The corrosion current density is substantially promoted in the culture involving bacteria, especially in the mixed culture.