研究了含钠添加剂强化某高硅低品位铁矿石内配碳球团的还原过程,并借助光学显微镜和扫描电镜分析了含钠添加剂掺量对内配碳球团还原行为及其强度变化的影响。结果表明:球团中配加含钠添加剂不仅可明显强化该铁矿石的还原行为,大幅度提...研究了含钠添加剂强化某高硅低品位铁矿石内配碳球团的还原过程,并借助光学显微镜和扫描电镜分析了含钠添加剂掺量对内配碳球团还原行为及其强度变化的影响。结果表明:球团中配加含钠添加剂不仅可明显强化该铁矿石的还原行为,大幅度提高焙烧球团的金属化率及其磨选产品的铁品位,同时还可明显提高焙烧球团的强度,降低焙烧球团的粉化率。钠盐配加量为3%的内配碳球团在960℃下还原40 min,所得焙烧产物的金属化率为86.21%,产品铁晶粒增大、连晶增多,孔洞显著减少,结构致密,还原过程的粉化率降至2.57%;焙烧产品在磨矿细度为-0.045 mm占96.15%情况下进行弱磁选(磁场强度180 k A/m),获得的精矿铁品位为87.93%,明显优于不添加钠盐情况下的指标(金属化率为45.62%,粉化率为35.39%,精矿铁品位为58.12%)。展开更多
More than 50 kinds of accessory minerals have been diseovered in 13 plutons along the Kangdese, Lhagoi Kangri and Himalaya petrographical belts. The features of zircon,apatite, radioactive minerals and sulphide minera...More than 50 kinds of accessory minerals have been diseovered in 13 plutons along the Kangdese, Lhagoi Kangri and Himalaya petrographical belts. The features of zircon,apatite, radioactive minerals and sulphide minerals are described in more detail. From early to late, the percentages of titanium, iron, calcium and zirconium minerals decrease,while those of niobium (tantalum), beryllium, uranium and tin minerals show an opposition. The accessory mineral associations from the Kangdese belt are rich in sphene, allanite, apatite and magnetite, whereas the associations from the Himalaya belt are rich in tourmaline, and the Lhagoi Kangri belt shows intermediate features.展开更多
To explicate the thermodynamics of the chromite ore lime-free roasting process, the thermodynamics of reactions involved in this process was calculated and the phrases of sinter with different roasting times were stud...To explicate the thermodynamics of the chromite ore lime-free roasting process, the thermodynamics of reactions involved in this process was calculated and the phrases of sinter with different roasting times were studied. The thermodynamics calculation shows that all the standard Gibbs free energy changes of the reactions to form Na2CrO4, Na2O-Fe2O3, Na2O·Al2O3 and Na2O3 SiO2 via chromite ore and Na2CO3 are negative, and the standard Gibbs free energy changes of the reactions between MgO, Fe2O3 and SiO2 released from chromite spinel to form MgO-Fe2O3 and MgO·SiO2 are also negative at the oxidative roasting temperatures (1 173 1 473 K). The phrase analysis of the sinter in lime-free roasting process shows that Na2O·Fe2O3, Na2O·Al2O3 and Na2O·SiO2 can be formed in the first 20 min, but they decrease in contents and finally disappear with the increase of roasting time. The final phase compositions of the sinter are Na2CrO4, MgO·Fe2O3, MgO·SiO2 and MgO. The results indicate that Na2CrO4 can be formed easily via the reaction ofNa2CO3 with chromite ore. Na2O·Fe2O3, Na2O-Al2O3 and Na2O·SiO2 can be formed as intermediate compounds in the roasting process and they can further react with chromite ore to form Na2CrO4. MgO released from chromite ore may react with iron oxides and silicon oxide to form stable compounds of MgO·Fe2O3 and MgO·SiO2, respectively.展开更多
Abstract: Maghemite-silica particulate nanocomposites were prepared by modified 2-step sol-gel process. Superparamagnetic maghemite nanoparticles were successfully produced using Massart's procedure. Nanocomposites ...Abstract: Maghemite-silica particulate nanocomposites were prepared by modified 2-step sol-gel process. Superparamagnetic maghemite nanoparticles were successfully produced using Massart's procedure. Nanocomposites consisting of synthesized maghemite nanoparticles and silica were produced by dispersing the as-synthesized maghemite nanoparticles into the silica particulate form. The system was then heated at 140 ℃for 3 d. A variety of mass ratios of Fe2O3/SiO2 was investigated. Moreover, no surfactant or other unnecessary precursor was involved. The nanocomposites were characterized using XRD, BET and AGM. The XRD diffraction patterns show the reflection corresponding to maghemite nanoparticles and a visible wide band at 20 from 20° to 35° which are the characteristics of the amorphous phase of the silica gel. The patterns also exhibit the presence of only maghemite and SiO2 amorphous phase, which indicates that there is no chemical reaction between the silica particulate gel and maghemite nanoparticles to form other compounds. The calculated crystallite size for encapsulated maghemite nanoparticles is smaller than the as-synthesized maghemite nanoparticles indicating the dissolution of the nanoparticles. Very high surface area is attained for the produced nanocomposites (360-390 m^2/g). This enhances the sensitivity and the reactivity of the nanocomposites. The shapes of the magnetization curves for nanocomposites are very similar to the as-synthesized maghemite nanoparticles. Superparamagnetic behaviour is exhibited by all samples, indicating that the size of the maghemite nanoparticles is always within the nanometre range. The increase in iron content gives rise to a small particle growth.展开更多
文摘研究了含钠添加剂强化某高硅低品位铁矿石内配碳球团的还原过程,并借助光学显微镜和扫描电镜分析了含钠添加剂掺量对内配碳球团还原行为及其强度变化的影响。结果表明:球团中配加含钠添加剂不仅可明显强化该铁矿石的还原行为,大幅度提高焙烧球团的金属化率及其磨选产品的铁品位,同时还可明显提高焙烧球团的强度,降低焙烧球团的粉化率。钠盐配加量为3%的内配碳球团在960℃下还原40 min,所得焙烧产物的金属化率为86.21%,产品铁晶粒增大、连晶增多,孔洞显著减少,结构致密,还原过程的粉化率降至2.57%;焙烧产品在磨矿细度为-0.045 mm占96.15%情况下进行弱磁选(磁场强度180 k A/m),获得的精矿铁品位为87.93%,明显优于不添加钠盐情况下的指标(金属化率为45.62%,粉化率为35.39%,精矿铁品位为58.12%)。
文摘More than 50 kinds of accessory minerals have been diseovered in 13 plutons along the Kangdese, Lhagoi Kangri and Himalaya petrographical belts. The features of zircon,apatite, radioactive minerals and sulphide minerals are described in more detail. From early to late, the percentages of titanium, iron, calcium and zirconium minerals decrease,while those of niobium (tantalum), beryllium, uranium and tin minerals show an opposition. The accessory mineral associations from the Kangdese belt are rich in sphene, allanite, apatite and magnetite, whereas the associations from the Himalaya belt are rich in tourmaline, and the Lhagoi Kangri belt shows intermediate features.
基金Project(2009FJ1009) supported by the Major Science and Technology Program of Hunan Province,China
文摘To explicate the thermodynamics of the chromite ore lime-free roasting process, the thermodynamics of reactions involved in this process was calculated and the phrases of sinter with different roasting times were studied. The thermodynamics calculation shows that all the standard Gibbs free energy changes of the reactions to form Na2CrO4, Na2O-Fe2O3, Na2O·Al2O3 and Na2O3 SiO2 via chromite ore and Na2CO3 are negative, and the standard Gibbs free energy changes of the reactions between MgO, Fe2O3 and SiO2 released from chromite spinel to form MgO-Fe2O3 and MgO·SiO2 are also negative at the oxidative roasting temperatures (1 173 1 473 K). The phrase analysis of the sinter in lime-free roasting process shows that Na2O·Fe2O3, Na2O·Al2O3 and Na2O·SiO2 can be formed in the first 20 min, but they decrease in contents and finally disappear with the increase of roasting time. The final phase compositions of the sinter are Na2CrO4, MgO·Fe2O3, MgO·SiO2 and MgO. The results indicate that Na2CrO4 can be formed easily via the reaction ofNa2CO3 with chromite ore. Na2O·Fe2O3, Na2O-Al2O3 and Na2O·SiO2 can be formed as intermediate compounds in the roasting process and they can further react with chromite ore to form Na2CrO4. MgO released from chromite ore may react with iron oxides and silicon oxide to form stable compounds of MgO·Fe2O3 and MgO·SiO2, respectively.
基金Project(RP021-2012C)supported by University of Malaya under the UMRG Fund,Malaysia
文摘Abstract: Maghemite-silica particulate nanocomposites were prepared by modified 2-step sol-gel process. Superparamagnetic maghemite nanoparticles were successfully produced using Massart's procedure. Nanocomposites consisting of synthesized maghemite nanoparticles and silica were produced by dispersing the as-synthesized maghemite nanoparticles into the silica particulate form. The system was then heated at 140 ℃for 3 d. A variety of mass ratios of Fe2O3/SiO2 was investigated. Moreover, no surfactant or other unnecessary precursor was involved. The nanocomposites were characterized using XRD, BET and AGM. The XRD diffraction patterns show the reflection corresponding to maghemite nanoparticles and a visible wide band at 20 from 20° to 35° which are the characteristics of the amorphous phase of the silica gel. The patterns also exhibit the presence of only maghemite and SiO2 amorphous phase, which indicates that there is no chemical reaction between the silica particulate gel and maghemite nanoparticles to form other compounds. The calculated crystallite size for encapsulated maghemite nanoparticles is smaller than the as-synthesized maghemite nanoparticles indicating the dissolution of the nanoparticles. Very high surface area is attained for the produced nanocomposites (360-390 m^2/g). This enhances the sensitivity and the reactivity of the nanocomposites. The shapes of the magnetization curves for nanocomposites are very similar to the as-synthesized maghemite nanoparticles. Superparamagnetic behaviour is exhibited by all samples, indicating that the size of the maghemite nanoparticles is always within the nanometre range. The increase in iron content gives rise to a small particle growth.