To protect carbon/carbon (C/C) composites from oxidation, a SiC coating modified with SiO2 was prepared by a complex technology. The inner SiC coating with thickness varying from 150 to 300 μm was initially coated by...To protect carbon/carbon (C/C) composites from oxidation, a SiC coating modified with SiO2 was prepared by a complex technology. The inner SiC coating with thickness varying from 150 to 300 μm was initially coated by chemical vapor reaction (CVR): a simple and cheap technique to prepare the SiC coating via siliconizing the substrate that was exposed to the mixed vapor (Si and SiO2) at high temperatures (1 923?2 273 K). Then the as-prepared coating was processed by a dipping and drying procedure with tetraethoxysilane as source materials to form SiO2 to fill the cracks and holes. Oxidation tests show that, after oxidation in air at 1 623 K for 10 h and thermal cycling between 1 623 K and room temperature 5 times, the mass loss of the CVR coated sample is up to 18.21%, while the sample coated with modified coating is only 5.96%, exhibiting an obvious improvement of oxidation and thermal shock resistance of the coating. The mass loss of the modified sample is mainly contributed to the reaction of C/C substrate with oxygen diffusing through the penetrating cracks formed in thermal shock tests.展开更多
Sodium fluoride and high specific area silica were synthesized by using sodium hexafluorosilicate(Na2Si F6) and sodium carbonate decahydrate(Na2CO3·10H2O). The influencing factors of react temperature, contact ti...Sodium fluoride and high specific area silica were synthesized by using sodium hexafluorosilicate(Na2Si F6) and sodium carbonate decahydrate(Na2CO3·10H2O). The influencing factors of react temperature, contact time, sodium dodecyl sulfate(SDS) and molar ratio of Na2 Si F6 to Na2CO3·10H2O were investigated. The optimum process involves the reaction of 0.075 mol Na2 Si F6 and 150 m L, 0.225 mol Na2CO3·10H2O(molar ratio of 1:3) at 85 °C for 90 min, and 2.0×10-3 mol sodium dodecyl sulfate(SDS) as additive. The results show that the purities of Si O2 and Na F at extraction yields of 96.5% and 98.0% are 91.0% and 98.6%, respectively. The obtained Si O2 were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), Fourier transform infrared ray(FTIR), differential scanning calorimetry and thermogravimetric analysis(DSC-TGA), N2 absorption/desorption(BET) and laser particle size analyzer. The result demonstrates that Si O2 particles have a high BET surface area of 103 m2/g, and a mean grain size of 985 nm.展开更多
Polycarbosilane containing beryllium(BPCS) precursors was prepared by the reaction of polycarbosilane(PCS) with beryllium acetylacetone(Be(acac)2).The analysis of structures and components of BPCS demonstrates that th...Polycarbosilane containing beryllium(BPCS) precursors was prepared by the reaction of polycarbosilane(PCS) with beryllium acetylacetone(Be(acac)2).The analysis of structures and components of BPCS demonstrates that their main structures are basically the same as PCS.Ceramization of BPCS precursors shows that BPCS precursors are organic below 600 °C and inorganic at 800 °C.At 1400 °C,BPCS precursors convert into silicon carbide ceramics.The ceramization of different beryllium content precursors were studied,which show that beryllium plays an important role in the inhibition of crystalline grain growth of β-SiC at high temperature and it can adjust the dielectric constant of silicon carbide ceramics.展开更多
The phase compositions and properties of Ti3SiC2-based composites with SiC addition of 5%-30% in mass fraction fabricated by in-situ reaction and hot pressing sintering were studied. SiC addition effectively prevented...The phase compositions and properties of Ti3SiC2-based composites with SiC addition of 5%-30% in mass fraction fabricated by in-situ reaction and hot pressing sintering were studied. SiC addition effectively prevented TiC synthesis but facilitated SiC synthesis. The Ti3SiC2/Ti C-SiC composite had better oxidation resistance when SiC added quantity reached 20% but poorer oxidation resistance with SiC addition under 15% than Ti3SiC2/TiC composite at higher temperatures. There were more than half of the original SiC and a few Ti3SiC2 remaining in Ti3SiC2/Ti C-SiC with 20% SiC addition, but all constituents in Ti3Si2/TiC composite were oxidized after 12 h in air at 1500 °C. The oxidation scale thickness of TS30, 1505.78 μm, was near a half of that of T,2715 μm, at 1500 °C for 20 h. Ti3SiC2/Ti C composite had a flexural strength of 474 MPa, which was surpassed by Ti3SiC2/TiC-SiC composites when SiC added amount reached 15%. The strength reached the peak of 518 MPa at 20% SiC added amount.展开更多
The Xialu chert, which contains abundant biological information, were investigated by major element analysis, micro-Raman, SEM and EPMA. The results show that SiO2 content of chert is 84.12%-93.08%, averaging 89.84%. ...The Xialu chert, which contains abundant biological information, were investigated by major element analysis, micro-Raman, SEM and EPMA. The results show that SiO2 content of chert is 84.12%-93.08%, averaging 89.84%. The close packed structures of low degree crystallinity of quartz indicate the hydrothermal origin. SiO2 of modern hot springs exhibit loose silica pellets and nodular, beaded structures. Under polarization microscope, the presence of biological skeleton structures indicate that biological activities are involved in the hydrothermal deposition, which correspond to the geochemical characteristics: w(SiO2)/ w(K2O+Na2O), w(SiO2)/w(Al2O3) and w(SiO2)/w(MgO), with average values of 295.29, 68.88 and 284.45, respectively. SiO2 is enriched in the organism(radiolarian) centers, the degree order of SiO2 within the biologic structures is much higher than that of outside. The impurity minerals albites are formed earlier than the original deposition. Kaolinites, feldspars and mixture of organic materials display lower degree of crystallinities and accumulate as vermicular aggregates.展开更多
基金Project(2006CB600901) supported by the National Basic Research Program of ChinaProject(50802115) supported by the National Natural Science Foundation of China
文摘To protect carbon/carbon (C/C) composites from oxidation, a SiC coating modified with SiO2 was prepared by a complex technology. The inner SiC coating with thickness varying from 150 to 300 μm was initially coated by chemical vapor reaction (CVR): a simple and cheap technique to prepare the SiC coating via siliconizing the substrate that was exposed to the mixed vapor (Si and SiO2) at high temperatures (1 923?2 273 K). Then the as-prepared coating was processed by a dipping and drying procedure with tetraethoxysilane as source materials to form SiO2 to fill the cracks and holes. Oxidation tests show that, after oxidation in air at 1 623 K for 10 h and thermal cycling between 1 623 K and room temperature 5 times, the mass loss of the CVR coated sample is up to 18.21%, while the sample coated with modified coating is only 5.96%, exhibiting an obvious improvement of oxidation and thermal shock resistance of the coating. The mass loss of the modified sample is mainly contributed to the reaction of C/C substrate with oxygen diffusing through the penetrating cracks formed in thermal shock tests.
文摘Sodium fluoride and high specific area silica were synthesized by using sodium hexafluorosilicate(Na2Si F6) and sodium carbonate decahydrate(Na2CO3·10H2O). The influencing factors of react temperature, contact time, sodium dodecyl sulfate(SDS) and molar ratio of Na2 Si F6 to Na2CO3·10H2O were investigated. The optimum process involves the reaction of 0.075 mol Na2 Si F6 and 150 m L, 0.225 mol Na2CO3·10H2O(molar ratio of 1:3) at 85 °C for 90 min, and 2.0×10-3 mol sodium dodecyl sulfate(SDS) as additive. The results show that the purities of Si O2 and Na F at extraction yields of 96.5% and 98.0% are 91.0% and 98.6%, respectively. The obtained Si O2 were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), Fourier transform infrared ray(FTIR), differential scanning calorimetry and thermogravimetric analysis(DSC-TGA), N2 absorption/desorption(BET) and laser particle size analyzer. The result demonstrates that Si O2 particles have a high BET surface area of 103 m2/g, and a mean grain size of 985 nm.
基金Project(51074193)supported by the National Natural Science Foundation of ChinaProjects(2011AA7024034,2011AA7053016)supported by the National High Technology Research and Development Program of ChinaProject(LK0903)supported by State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University,China
文摘Polycarbosilane containing beryllium(BPCS) precursors was prepared by the reaction of polycarbosilane(PCS) with beryllium acetylacetone(Be(acac)2).The analysis of structures and components of BPCS demonstrates that their main structures are basically the same as PCS.Ceramization of BPCS precursors shows that BPCS precursors are organic below 600 °C and inorganic at 800 °C.At 1400 °C,BPCS precursors convert into silicon carbide ceramics.The ceramization of different beryllium content precursors were studied,which show that beryllium plays an important role in the inhibition of crystalline grain growth of β-SiC at high temperature and it can adjust the dielectric constant of silicon carbide ceramics.
基金Project(51302206)supported by the National Natural Science Foundation of ChinaProject(2013JK0925)supported by Shaanxi Provincial Department of Education,China+1 种基金Project(SKLSP201308)supported by the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,ChinaProject supported by the State Scholarship Fund,China
文摘The phase compositions and properties of Ti3SiC2-based composites with SiC addition of 5%-30% in mass fraction fabricated by in-situ reaction and hot pressing sintering were studied. SiC addition effectively prevented TiC synthesis but facilitated SiC synthesis. The Ti3SiC2/Ti C-SiC composite had better oxidation resistance when SiC added quantity reached 20% but poorer oxidation resistance with SiC addition under 15% than Ti3SiC2/TiC composite at higher temperatures. There were more than half of the original SiC and a few Ti3SiC2 remaining in Ti3SiC2/Ti C-SiC with 20% SiC addition, but all constituents in Ti3Si2/TiC composite were oxidized after 12 h in air at 1500 °C. The oxidation scale thickness of TS30, 1505.78 μm, was near a half of that of T,2715 μm, at 1500 °C for 20 h. Ti3SiC2/Ti C composite had a flexural strength of 474 MPa, which was surpassed by Ti3SiC2/TiC-SiC composites when SiC added amount reached 15%. The strength reached the peak of 518 MPa at 20% SiC added amount.
基金Projects(41273040,41303025)supported by the National Natural Science Foundation of China
文摘The Xialu chert, which contains abundant biological information, were investigated by major element analysis, micro-Raman, SEM and EPMA. The results show that SiO2 content of chert is 84.12%-93.08%, averaging 89.84%. The close packed structures of low degree crystallinity of quartz indicate the hydrothermal origin. SiO2 of modern hot springs exhibit loose silica pellets and nodular, beaded structures. Under polarization microscope, the presence of biological skeleton structures indicate that biological activities are involved in the hydrothermal deposition, which correspond to the geochemical characteristics: w(SiO2)/ w(K2O+Na2O), w(SiO2)/w(Al2O3) and w(SiO2)/w(MgO), with average values of 295.29, 68.88 and 284.45, respectively. SiO2 is enriched in the organism(radiolarian) centers, the degree order of SiO2 within the biologic structures is much higher than that of outside. The impurity minerals albites are formed earlier than the original deposition. Kaolinites, feldspars and mixture of organic materials display lower degree of crystallinities and accumulate as vermicular aggregates.