Granite is usually composed of quartz,biotite,feldspar,and cracks,and the variation characteristics of these components could reflect the deformation and failure process of rock well.Taking granite as an example,the v...Granite is usually composed of quartz,biotite,feldspar,and cracks,and the variation characteristics of these components could reflect the deformation and failure process of rock well.Taking granite as an example,the video camera was used to record the deformation and failure process of rock.The distribution of meso-components in video images was then identified.The meso-components of rock failure precursors were also discussed.Moreover,a modified LSTM(long short-term memory method)based on SSA(sparrow search algorithm)was proposed to estimate the change of meso-components of rock failure precursor.It shows that the initiation and expansion of cracks are mainly caused by feldspar and quartz fracture,and when the quartz and feldspar exit the stress framework,rock failure occurs;the second large increase of crack area and the second large decrease of quartz or feldspar area may be used as a precursor of rock failure;the precursor time of rock failure based on meso-scopic components is about 4 s earlier than that observed by the naked eye;the modified LSTM network has the strongest estimation ability for quartz area change,followed by feldspar and biotite,and has the worst estimation ability for cracks;when using the modified LSTM network to predict the precursors of rock instability and failure,quartz and feldspar could be given priority.The results presented herein may provide reference in the investigation of rock failure mechanism.展开更多
Based on the similarity theory,a tunnel excavation simulation testing system under typical unsymmetrical loading conditions was established.Using this system,the failure mechanism of surrounding rock of shallow-bias t...Based on the similarity theory,a tunnel excavation simulation testing system under typical unsymmetrical loading conditions was established.Using this system,the failure mechanism of surrounding rock of shallow-bias tunnels with small clear distance was analyzed along with the load characteristics.The results show that:1) The failure process of surrounding rock of shallow-bias tunnels with small clear distance consists of structural and stratum deformation induced by tunnel excavation; Microfracture surfaces are formed in the tunnel surrounding rock and extend deep into the rock mass in a larger density; Tensile cracking occurs in shallow position on the deep-buried side,with shear slip in deep rock mass.In the meantime,rapid deformation and slip take place on the shallow-buried side until the surrounding rocks totally collapse.The production and development of micro-fracture surfaces in the tunnel surrounding rock and tensile cracking in the shallow position on the deep-buried side represent the key stages of failure.2) The final failure mode is featured by an inverted conical fracture with tunnel arch as its top and the slope at tunnel entrance slope as its bottom.The range of failure on the deep-buried side is significantly larger than that on the shallow-buried side.Such difference becomes more prominent with the increasing bias angle.What distinguishes it from the "linear fracture surface" model is that the model proposed has a larger fracture angle on the two sides.Moreover,the bottom of the fracture is located at the springing line of tunnel arch.3) The total vertical load increases with bias angle.Compared with the existing methods,the unsymmetrical loading effect in measurement is more prominent.At last,countermeasures are proposed according to the analysis results: during engineering process,1) The surrounding rock mass on the deep-buried side should be reinforced apart from the tunnel surrounding rock for shallow-buried tunnels with small clear distance; moreover,the scope of consolidation should go beyond the midline of tunnel(along the direction of the top of slope) by 4 excavation spans of single tunnel.2) It is necessary to modify the load value of shallow-bias tunnels with small clear distance.展开更多
基金Project(41472254)supported by the National Natural Science Foundation of China。
文摘Granite is usually composed of quartz,biotite,feldspar,and cracks,and the variation characteristics of these components could reflect the deformation and failure process of rock well.Taking granite as an example,the video camera was used to record the deformation and failure process of rock.The distribution of meso-components in video images was then identified.The meso-components of rock failure precursors were also discussed.Moreover,a modified LSTM(long short-term memory method)based on SSA(sparrow search algorithm)was proposed to estimate the change of meso-components of rock failure precursor.It shows that the initiation and expansion of cracks are mainly caused by feldspar and quartz fracture,and when the quartz and feldspar exit the stress framework,rock failure occurs;the second large increase of crack area and the second large decrease of quartz or feldspar area may be used as a precursor of rock failure;the precursor time of rock failure based on meso-scopic components is about 4 s earlier than that observed by the naked eye;the modified LSTM network has the strongest estimation ability for quartz area change,followed by feldspar and biotite,and has the worst estimation ability for cracks;when using the modified LSTM network to predict the precursors of rock instability and failure,quartz and feldspar could be given priority.The results presented herein may provide reference in the investigation of rock failure mechanism.
基金Project(51508575)supported by the National Natural Science Foundation of ChinaProject(2011CB013802)supported by the National Basic Research Program of China+1 种基金Projects(2014M560652,2016T90764)supported by the China Postdoctoral Science FoundationProject(2015RS4006)supported by the Innovative Talents of Science and Technology Plan of Hunan Province,China
文摘Based on the similarity theory,a tunnel excavation simulation testing system under typical unsymmetrical loading conditions was established.Using this system,the failure mechanism of surrounding rock of shallow-bias tunnels with small clear distance was analyzed along with the load characteristics.The results show that:1) The failure process of surrounding rock of shallow-bias tunnels with small clear distance consists of structural and stratum deformation induced by tunnel excavation; Microfracture surfaces are formed in the tunnel surrounding rock and extend deep into the rock mass in a larger density; Tensile cracking occurs in shallow position on the deep-buried side,with shear slip in deep rock mass.In the meantime,rapid deformation and slip take place on the shallow-buried side until the surrounding rocks totally collapse.The production and development of micro-fracture surfaces in the tunnel surrounding rock and tensile cracking in the shallow position on the deep-buried side represent the key stages of failure.2) The final failure mode is featured by an inverted conical fracture with tunnel arch as its top and the slope at tunnel entrance slope as its bottom.The range of failure on the deep-buried side is significantly larger than that on the shallow-buried side.Such difference becomes more prominent with the increasing bias angle.What distinguishes it from the "linear fracture surface" model is that the model proposed has a larger fracture angle on the two sides.Moreover,the bottom of the fracture is located at the springing line of tunnel arch.3) The total vertical load increases with bias angle.Compared with the existing methods,the unsymmetrical loading effect in measurement is more prominent.At last,countermeasures are proposed according to the analysis results: during engineering process,1) The surrounding rock mass on the deep-buried side should be reinforced apart from the tunnel surrounding rock for shallow-buried tunnels with small clear distance; moreover,the scope of consolidation should go beyond the midline of tunnel(along the direction of the top of slope) by 4 excavation spans of single tunnel.2) It is necessary to modify the load value of shallow-bias tunnels with small clear distance.