Based on the axial stress-axial strain curves,the effect of fissure angle on the strength and deformation behavior of sandstone specimens containing combined flaws is analyzed.The mechanical parameters of sandstone sp...Based on the axial stress-axial strain curves,the effect of fissure angle on the strength and deformation behavior of sandstone specimens containing combined flaws is analyzed.The mechanical parameters of sandstone specimens containing combined flaws are all lower than that of intact specimen,but the reduction extent is distinctly related to the fissure angle.The results of sandstone specimens containing combined flaws are obtained by the acoustic emission,which can be used to monitor the crack initiation and propagation.The ultimate failure mode and crack coalescence behavior are evaluated for brittle sandstone specimens containing combined flaws.Nine different crack types are identified on the basis of their geometry and crack coalescence mechanism(tensile crack,hole collapse,far-field crack and surface spalling)for combined flaws.The photographic monitoring was also adopted for uniaxial compression test in order to confirm the sequence of crack coalescence in brittle sandstone specimens containing combined flaws,which recorded the real-time crack coalescence process during entire deformation.According to the monitored results,the effect of crack coalescence process on the strength and deformation behavior is investigated based on a detailed analysis for brittle sandstone specimens containing combined flaws by using digital photogrammetry.展开更多
Based on the results of conventional triaxial compression tests and triaxial compression creep tests on Xiangjiaba sandstone,the failure modes in short-term tests and creep tests,fractography of sandstone after creep ...Based on the results of conventional triaxial compression tests and triaxial compression creep tests on Xiangjiaba sandstone,the failure modes in short-term tests and creep tests,fractography of sandstone after creep failure,short-term and creep failure criterion are analyzed.In the short-term tests and creep tests,the sandstone samples fail in a mix mode consisting of shear failure in a single main plane and tensile failure.Confining pressure can restrict brittle failure and enhance the ductility of sandstone.In the creep tests,brittle fracture is reduced and plastic deformation can fully be developed compared to the condition of short-term tests.And the shear fracture surfaces are flat and they are covered by small particles as a result of friction.When confining pressure increases,particle size decreases while the degree of friction on shear plane increases.On the tensile failure plane,the tensile trace and direction of tearing could be clearly observed.There are obvious tearing steps on the tensile failure plane and tearing laminated structure on the front edge of tearing fracture.The same criterion can be used for the short-term and creep behavior,and the fitting effect using the MOGI criterion is better than the DRUCKER PRAGER criterion.The cohesion and friction angle calculated by the MOGI criterion are in good accordance with those calculated by the MOHR COULOMB criterion.展开更多
基金Project(2014CB046905,2013CB36003)supported by the National Basic Research Program of ChinaProject(NCET-12-0961)supported by the Program for New Century Excellent Talents in University,China+1 种基金Projects(51179189,41272344)supported by the National Natural Science Foundation of ChinaProject(HBKLCIV201201)supported by the Open Research Fund Program of the Key Laboratory of Safety for Geotechnical and Structural Engineering of Hubei Province,China
文摘Based on the axial stress-axial strain curves,the effect of fissure angle on the strength and deformation behavior of sandstone specimens containing combined flaws is analyzed.The mechanical parameters of sandstone specimens containing combined flaws are all lower than that of intact specimen,but the reduction extent is distinctly related to the fissure angle.The results of sandstone specimens containing combined flaws are obtained by the acoustic emission,which can be used to monitor the crack initiation and propagation.The ultimate failure mode and crack coalescence behavior are evaluated for brittle sandstone specimens containing combined flaws.Nine different crack types are identified on the basis of their geometry and crack coalescence mechanism(tensile crack,hole collapse,far-field crack and surface spalling)for combined flaws.The photographic monitoring was also adopted for uniaxial compression test in order to confirm the sequence of crack coalescence in brittle sandstone specimens containing combined flaws,which recorded the real-time crack coalescence process during entire deformation.According to the monitored results,the effect of crack coalescence process on the strength and deformation behavior is investigated based on a detailed analysis for brittle sandstone specimens containing combined flaws by using digital photogrammetry.
基金Project(2011CB013504)supported by National Basic Research Program of ChinaProjects(51109069,11172090)supported by the National Natural Science Foundation of China+1 种基金Project(2009B14014)supported by the Fundamental Research Funds for the Central Universities of ChinaProject Financially supported by the Program for Changjiang Scholars and lnnovative Research Team in University,China
文摘Based on the results of conventional triaxial compression tests and triaxial compression creep tests on Xiangjiaba sandstone,the failure modes in short-term tests and creep tests,fractography of sandstone after creep failure,short-term and creep failure criterion are analyzed.In the short-term tests and creep tests,the sandstone samples fail in a mix mode consisting of shear failure in a single main plane and tensile failure.Confining pressure can restrict brittle failure and enhance the ductility of sandstone.In the creep tests,brittle fracture is reduced and plastic deformation can fully be developed compared to the condition of short-term tests.And the shear fracture surfaces are flat and they are covered by small particles as a result of friction.When confining pressure increases,particle size decreases while the degree of friction on shear plane increases.On the tensile failure plane,the tensile trace and direction of tearing could be clearly observed.There are obvious tearing steps on the tensile failure plane and tearing laminated structure on the front edge of tearing fracture.The same criterion can be used for the short-term and creep behavior,and the fitting effect using the MOGI criterion is better than the DRUCKER PRAGER criterion.The cohesion and friction angle calculated by the MOGI criterion are in good accordance with those calculated by the MOHR COULOMB criterion.