A recently proposed model coupling with the solid-fluid of the saturated sand was utilized to study the deformation band. Based on the critical state plasticity model by Borja and Andrade, the hydraulic conductivity t...A recently proposed model coupling with the solid-fluid of the saturated sand was utilized to study the deformation band. Based on the critical state plasticity model by Borja and Andrade, the hydraulic conductivity tensor was naturally treated as a function of the spatial discretization matrix about the displacement and the stress field, allowing a more realistic representation of the physical phenomenon. The fully Lagrangian form of the Darcy law was resolved by Piola algorithm, and then the flow law was gained, leading to the implementation of a modified model of the saturated sand. Then the criterion for the onset of localization was derived and utilized to detect instability. The constitutive model was implemented in a finite element program coded by FORTRAN, which was used to predict the formation and development of shear bands in plane strain compression of saturated sand. At last, the formation mechanism of the shear band was discussed. It is shown that the model works well, and the simulation sample bifurcates at 1.18% axial strain, which is in a good qualitative agreement with the experiment. The pore pressure greatly affects the onset and development of the deformation band, and it obviously increases around the localization-prone regions with the direction toward the outer side of the normal of the shear band, while the pore stress flows nearly horizontally and is distributed equally far away the shear band region.展开更多
The pile-soil system interaction computational model in liquefaction-induced lateral spreading ground was established by the finite difference numerical method.Considering an elastic-plastic subgrade reaction method,n...The pile-soil system interaction computational model in liquefaction-induced lateral spreading ground was established by the finite difference numerical method.Considering an elastic-plastic subgrade reaction method,numerical methods involving finite difference approach of pile in liquefaction-induced lateral spreading ground were derived and implemented into a finite difference program.Based on the monotonic loading tests on saturated sand after liquefaction,the liquefaction lateral deformation of the site where group piles are located was predicted.The effects of lateral ground deformation after liquefaction on a group of pile foundations were studied using the fmite difference program mentioned above,and the failure mechanism of group piles in liquefaction-induced lateral spreading ground was obtained.The applicability of the program was preliminarily verified.The results show that the bending moments at the interfaces between liquefied and non-liquefied soil layers are larger than those at the pile's top when the pile's top is embedded.The value of the additional static bending moment is larger than the peak dynamic bending moment during the earthquake,so in the pile foundation design,more than the superstructure's dynamics should be considered and the effect of lateral ground deformation on pile foundations cannot be neglected.展开更多
基金Project(2006G007-C) supported by the Foundation of the Science and Technology Section of Ministry of Railway of ChinaProject(77206) supported by the Excellent PhD Thesis Innovation Foundation of Central South University,China
文摘A recently proposed model coupling with the solid-fluid of the saturated sand was utilized to study the deformation band. Based on the critical state plasticity model by Borja and Andrade, the hydraulic conductivity tensor was naturally treated as a function of the spatial discretization matrix about the displacement and the stress field, allowing a more realistic representation of the physical phenomenon. The fully Lagrangian form of the Darcy law was resolved by Piola algorithm, and then the flow law was gained, leading to the implementation of a modified model of the saturated sand. Then the criterion for the onset of localization was derived and utilized to detect instability. The constitutive model was implemented in a finite element program coded by FORTRAN, which was used to predict the formation and development of shear bands in plane strain compression of saturated sand. At last, the formation mechanism of the shear band was discussed. It is shown that the model works well, and the simulation sample bifurcates at 1.18% axial strain, which is in a good qualitative agreement with the experiment. The pore pressure greatly affects the onset and development of the deformation band, and it obviously increases around the localization-prone regions with the direction toward the outer side of the normal of the shear band, while the pore stress flows nearly horizontally and is distributed equally far away the shear band region.
基金Project(51109208)supported by the National Natural Science Foundation of ChinaProject(2013M531688)supported by the Postdoctoral Science Foundation of China+1 种基金Project(Z012009)supported by the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering(Institute of Rock and Soil Mechanics,Chinese Academy of Sciences)Project(CKSF2012054)supported by the Foundation of Changjiang River Scientific Research Institute,China
文摘The pile-soil system interaction computational model in liquefaction-induced lateral spreading ground was established by the finite difference numerical method.Considering an elastic-plastic subgrade reaction method,numerical methods involving finite difference approach of pile in liquefaction-induced lateral spreading ground were derived and implemented into a finite difference program.Based on the monotonic loading tests on saturated sand after liquefaction,the liquefaction lateral deformation of the site where group piles are located was predicted.The effects of lateral ground deformation after liquefaction on a group of pile foundations were studied using the fmite difference program mentioned above,and the failure mechanism of group piles in liquefaction-induced lateral spreading ground was obtained.The applicability of the program was preliminarily verified.The results show that the bending moments at the interfaces between liquefied and non-liquefied soil layers are larger than those at the pile's top when the pile's top is embedded.The value of the additional static bending moment is larger than the peak dynamic bending moment during the earthquake,so in the pile foundation design,more than the superstructure's dynamics should be considered and the effect of lateral ground deformation on pile foundations cannot be neglected.