基于球谐函数,实现区域电离层建模,并对区域差分码偏差(differential code bias,DCB)与总电子含量(total electron content,TEC)进行解算。对于格网处垂直总电子含量(vertical total electron content,VTEC)出现的异常值,提出一种序列...基于球谐函数,实现区域电离层建模,并对区域差分码偏差(differential code bias,DCB)与总电子含量(total electron content,TEC)进行解算。对于格网处垂直总电子含量(vertical total electron content,VTEC)出现的异常值,提出一种序列无约束最小化技术(sequential unconstrained minimization technique,SUMT)修正法进行修正,利用国际全球导航卫星系统服务(International GNSS Service,IGS)网络的6个测站双频观测数据,建立了电离层VTEC区域模型,并估算了31天的卫星频间DCB,将估算值与电离层分析中心中国科学院(Chinese Academy of Sciences,CAS)发布的产品进行对比分析,结果显示:所有的卫星差值都在0.42 ns以内,其中87.5%的卫星差值在0.4 ns以内,78.1%的卫星差值在0.2 ns以内,频间DCB的平均偏差基本小于0.4 ns。此外,估算的全球定位系统(global positioning system,GPS)卫星DCB序列的标准差(standard deviation,STD)值小于0.1 ns。建立了经纬度范围为5°E~25°E、40°N~60°N的电离层区域模型,将VTEC建模结果与CAS发布的全球电离层地图(global ionospheric map,GIM)产品做差比较,结果显示整体时间点的差值均处于4 TECU以内,且超过90%的区域差值在2 TECU以内,表明估算的结果与CAS产品具有良好的一致性。展开更多
文摘现有的差分码偏差(differential code bias,DCB)产品和常用的DCB估计方法均是将DCB视为1 d中的常量参数,忽略了DCB在1 d中的短时变化。为了分析北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)卫星DCB短时变化特性,文章首先采用最小二乘和Tikhonov正则化方法同步估算各个历元时刻下的电离层参数和DCB参数,然后分析卫星DCB短时序列的精度和稳定性,并利用谱分析方法对短时DCB的周期性进行分析,建立模型来拟合短时DCB变化,最后通过实验探讨短时DCB序列改正对标准单点定位(standard point positioning,SPP)的影响。实验结果表明:在SPP中,施加DCB改正可以提高定位精度,施加中国科学院(Chinese Academy of Sciences,CAS)产品改正或短时DCB改正,定位精度提升都在40%以上;在不同测站上施加短时DCB改正和CAS产品改正,SPP定位精度各有优劣,两者差异在cm级,改正效果大致相当。