粉煤灰由于含有钙镁等碱土金属氧化物导致其浆液呈碱性,直接充填井下采空区易污染地下水源。利用陕北矿区府谷电厂粉煤灰开展组分测试、浆液pH值特性测试及固碳降碱试验,基于浆液pH值与OH−浓度理论关系对粉煤灰固碳降碱反应过程进行阶...粉煤灰由于含有钙镁等碱土金属氧化物导致其浆液呈碱性,直接充填井下采空区易污染地下水源。利用陕北矿区府谷电厂粉煤灰开展组分测试、浆液pH值特性测试及固碳降碱试验,基于浆液pH值与OH−浓度理论关系对粉煤灰固碳降碱反应过程进行阶段划分并提出两级耦合的粉煤灰高效矿化方法。研究结果表明:①粉煤灰含CaO、MgO、K_(2)O等碱土金属氧化物,溶于水浆液呈高碱特性,浆液pH值随浆液浓度增大而增大,当粉煤灰浆液质量分数≥30%时,浆液pH值不受质量分数影响且粉煤灰碱土金属氧化物与水反应生成OH−速率较快,溶于水20 min,OH^(−)浓度饱和;②粉煤灰与CO_(2)发生矿化反应生成方解石型CaCO_(3),每1 kg粉煤灰可矿化封存29.57 g CO_(2);③粉煤灰与CO_(2)发生矿化粉煤灰固碳降碱过程中pH变化曲线呈“倒S”型,按降pH速率分为慢速(Ⅰ)、快速(Ⅱ)、慢速(Ⅲ)3个阶段,3个阶段的pH值分界点分别为11.39、7~8且第I阶段无法消除;④降pH与降碱不是同一概念,降碱指的是降浆液中OH−浓度,降pH第I阶段对应快速降碱阶段,降pH第Ⅱ、Ⅲ阶段对应深度降碱阶段;⑤决定粉煤灰固碳量的主要为降pH第I阶段,而非pH下降速率较大的第Ⅱ阶段,第I阶段CO_(2)利用率约为30.78%,第Ⅱ、Ⅲ阶段CO_(2)总利用率约为9.04%;⑥基于粉煤灰固碳降碱过程阶段划分及反应装置降碱速率、容积的差异性,提出两级耦合的粉煤灰高效矿化方法。研究结果对分析粉煤灰固碳降碱机理,提高粉煤灰固碳降碱效率,促进粉煤灰处置工业化应用具有重要意义。展开更多
为实现生活垃圾焚烧飞灰(MSWIFA)资源化利用,采用单因素法和响应面曲线法研究MSWIFA直接湿法矿化固碳性能,获得最大CO_(2)封存率,并采用BCR形态分析及毒性浸出试验评价其矿化前后重金属环境风险。结果表明:随着反应温度、压力、时间及...为实现生活垃圾焚烧飞灰(MSWIFA)资源化利用,采用单因素法和响应面曲线法研究MSWIFA直接湿法矿化固碳性能,获得最大CO_(2)封存率,并采用BCR形态分析及毒性浸出试验评价其矿化前后重金属环境风险。结果表明:随着反应温度、压力、时间及液固比的增大,MSWIFA的CO_(2)封存率先增大后减小,在105℃、2.0 MPa、1.5 h和液固比为20 mL g时最大CO_(2)封存率分别为16.71%,15.80%,15.36%,14.96%;基于响应面曲线法得出的优化反应条件为0.5 MPa、99.19℃、1 h及液固比25 mL g,最大CO_(2)封存率为12.91%;矿化反应后,MSWIFA中As和Pb的可氧化态转化为残渣态,Ba转化为可还原态,Cd转化为残渣态和可还原态,Zn的残渣态和可氧化态转化为可还原态和酸可溶态,反应后均无重金属毒性浸出的环境风险。展开更多
二氧化碳矿化养护混凝土技术使得混凝土早期在较短时间内快速成型和提升力学性能,极大缩短养护周期,提高生产效率,是颇具大规模工业化应用前景的二氧化碳利用方式。对基于工业固废的加气混凝土的二氧化碳养护技术进行了初步探索,着重研...二氧化碳矿化养护混凝土技术使得混凝土早期在较短时间内快速成型和提升力学性能,极大缩短养护周期,提高生产效率,是颇具大规模工业化应用前景的二氧化碳利用方式。对基于工业固废的加气混凝土的二氧化碳养护技术进行了初步探索,着重研究了原料掺比、养护压力以及养护制度在CO_(2)矿化反应中的影响。二氧化碳养护加气混凝土配方主要由试件的抗压强度和固碳性能共同决定。通过SEM和XRD分析等方法表征了在不同养护工况下反应产物的变化特点,同时使用压汞法测定了CO_(2)养护前后的孔隙分布。结果表明,对自然养护4 d后的加气混凝土进行2 h CO_(2)养护,试件固碳率随着养护压力升高而升高,低压养护和梯级养护有利于降低加气混凝土试件的力学强度损失,梯级养护中CO_(2)浓度/分压力越高,加气混凝土试件表观固碳率越高;在相同的CO_(2)养护条件下,SEM观察到矿化反应产物有不同形貌,如球状和纺锤形等,XRD分析则进一步证明了碳酸钙有3种不同晶型;CO_(2)养护后,孔径0.01~0.10μm微孔降低明显,表观固碳率越高,对加气混凝土试件的填充效果越显著。展开更多
文摘粉煤灰由于含有钙镁等碱土金属氧化物导致其浆液呈碱性,直接充填井下采空区易污染地下水源。利用陕北矿区府谷电厂粉煤灰开展组分测试、浆液pH值特性测试及固碳降碱试验,基于浆液pH值与OH−浓度理论关系对粉煤灰固碳降碱反应过程进行阶段划分并提出两级耦合的粉煤灰高效矿化方法。研究结果表明:①粉煤灰含CaO、MgO、K_(2)O等碱土金属氧化物,溶于水浆液呈高碱特性,浆液pH值随浆液浓度增大而增大,当粉煤灰浆液质量分数≥30%时,浆液pH值不受质量分数影响且粉煤灰碱土金属氧化物与水反应生成OH−速率较快,溶于水20 min,OH^(−)浓度饱和;②粉煤灰与CO_(2)发生矿化反应生成方解石型CaCO_(3),每1 kg粉煤灰可矿化封存29.57 g CO_(2);③粉煤灰与CO_(2)发生矿化粉煤灰固碳降碱过程中pH变化曲线呈“倒S”型,按降pH速率分为慢速(Ⅰ)、快速(Ⅱ)、慢速(Ⅲ)3个阶段,3个阶段的pH值分界点分别为11.39、7~8且第I阶段无法消除;④降pH与降碱不是同一概念,降碱指的是降浆液中OH−浓度,降pH第I阶段对应快速降碱阶段,降pH第Ⅱ、Ⅲ阶段对应深度降碱阶段;⑤决定粉煤灰固碳量的主要为降pH第I阶段,而非pH下降速率较大的第Ⅱ阶段,第I阶段CO_(2)利用率约为30.78%,第Ⅱ、Ⅲ阶段CO_(2)总利用率约为9.04%;⑥基于粉煤灰固碳降碱过程阶段划分及反应装置降碱速率、容积的差异性,提出两级耦合的粉煤灰高效矿化方法。研究结果对分析粉煤灰固碳降碱机理,提高粉煤灰固碳降碱效率,促进粉煤灰处置工业化应用具有重要意义。
文摘为实现生活垃圾焚烧飞灰(MSWIFA)资源化利用,采用单因素法和响应面曲线法研究MSWIFA直接湿法矿化固碳性能,获得最大CO_(2)封存率,并采用BCR形态分析及毒性浸出试验评价其矿化前后重金属环境风险。结果表明:随着反应温度、压力、时间及液固比的增大,MSWIFA的CO_(2)封存率先增大后减小,在105℃、2.0 MPa、1.5 h和液固比为20 mL g时最大CO_(2)封存率分别为16.71%,15.80%,15.36%,14.96%;基于响应面曲线法得出的优化反应条件为0.5 MPa、99.19℃、1 h及液固比25 mL g,最大CO_(2)封存率为12.91%;矿化反应后,MSWIFA中As和Pb的可氧化态转化为残渣态,Ba转化为可还原态,Cd转化为残渣态和可还原态,Zn的残渣态和可氧化态转化为可还原态和酸可溶态,反应后均无重金属毒性浸出的环境风险。
文摘二氧化碳矿化养护混凝土技术使得混凝土早期在较短时间内快速成型和提升力学性能,极大缩短养护周期,提高生产效率,是颇具大规模工业化应用前景的二氧化碳利用方式。对基于工业固废的加气混凝土的二氧化碳养护技术进行了初步探索,着重研究了原料掺比、养护压力以及养护制度在CO_(2)矿化反应中的影响。二氧化碳养护加气混凝土配方主要由试件的抗压强度和固碳性能共同决定。通过SEM和XRD分析等方法表征了在不同养护工况下反应产物的变化特点,同时使用压汞法测定了CO_(2)养护前后的孔隙分布。结果表明,对自然养护4 d后的加气混凝土进行2 h CO_(2)养护,试件固碳率随着养护压力升高而升高,低压养护和梯级养护有利于降低加气混凝土试件的力学强度损失,梯级养护中CO_(2)浓度/分压力越高,加气混凝土试件表观固碳率越高;在相同的CO_(2)养护条件下,SEM观察到矿化反应产物有不同形貌,如球状和纺锤形等,XRD分析则进一步证明了碳酸钙有3种不同晶型;CO_(2)养护后,孔径0.01~0.10μm微孔降低明显,表观固碳率越高,对加气混凝土试件的填充效果越显著。